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Chapter One 

Introductory Concepts of Fluid Mechanics 

 

1.1. The Concept of a Fluid and Fluid Mechanics 

Mechanics is the oldest physical science that deals with both stationary and 

moving bodies under the influence of forces. The branch of mechanics that deals 

with bodies at rest is called statics, while the branch that deals with bodies in 

motion is called dynamics. The subcategory fluid mechanics is defined as the 

science that deals with the behavior of fluids at rest (fluid statics) or in motion 

(fluid dynamics), and the interaction of fluids with solids or other fluids at the 

boundaries. Fluid mechanics is also referred to as fluid dynamics by considering 

fluids at rest as a special case of motion with zero velocity. 

Fluid is a substance that deforms continuously when subjected to shear stress, no 

matter how small that shear stress may be. Fluids may be either liquids or gases. 

Solids, as compared to fluids, cannot be deformed permanently (plastic 

deformation) unless a certain value of shear stress (called the yield stress) is 

exerted on it. 

Figure 1.1 illustrates a solid block resting on a rigid plane and stressed by its own 

weight. The solid sags into a static deflection, shown as a highly exaggerated 

dashed line, resisting shear without flow. A free-body diagram of element A on the 

side of the block shows that there is shear in the block along a plane cut at an angle 

θ through A. Since the block sides are unsupported, element A has zero stress on 

the left and right sides and compression stress σ = - p on the top and bottom. 

Mohr’s circle does not reduce to a point, and there is nonzero shear stress in the 

block. 
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By contrast, the liquid and gas at rest in Fig. 1.1 require the supporting walls in 

order to eliminate shear stress. The walls exert a compression stress of - p and 

reduce Mohr’s circle to a point with zero shear everywhere, i.e., the hydrostatic 

condition. The liquid retains its volume and forms a free surface in the container. If 

the walls are removed, shear develops in the liquid and a big splash results. If the 

container is tilted, shear again develops, waves form, and the free surface seeks a 

horizontal configuration, pouring out over the lip if necessary. Meanwhile, the gas 

is unrestrained and expands out of the container, filling all available space. 

Element A in the gas is also hydrostatic and exerts a compression stress - p on the 

walls. 

 

Figure 1.1: A solid at rest can resist shear. (a) Static deflection of the solid; (b) equilibrium and 

Mohr’s circle for solid element A. A fluid cannot resist shear. (c) Containing walls are needed; (d) 

equilibrium and Mohr’s circle for fluid element A. 
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According to the variation of density of the fluids with pressure, fluids are 

classified in to "incompressible" and "compressible" fluids. 

1.1.1. Incompressible Fluids 

They are the fluids with constant density, or the change of density with pressure is 

so small that can be neglected and considers the density as constant. The 

incompressible fluids are basically the "LIQUIDS". Gases at low velocities are 

usually considered as incompressible fluids also. 

There are no exact incompressible fluids in practice. For example, the density of 

water at atmospheric pressure (0.1 MPa) is (1000 kg/m
3
). When the pressure is 

increased to (20 MPa), the density becomes (1010 kg/m
3
). Thus, increasing the 

pressure by a factor of (200) increases the density by only (1%)!! For this reason, it 

is reasonable to consider the liquids as incompressible fluids with constant density. 

1.1.2. Compressible Fluids: 

They are the fluids with variable density, or the change of density with pressure is 

large and cannot be neglected. These include basically the "GASES". In some 

liquids problems, such as "water hammer", the compressibility of liquids must be 

considered. 

 

1.2. Application Areas of Fluid Mechanics 

Fluid mechanics is widely used both in everyday activities and in the design of 

modern engineering systems from vacuum cleaners to supersonic aircraft. 

Therefore, it is important to develop a good understanding of the basic principles 

of fluid mechanics. 

1- Irrigation. 

2- Navigation. 

3- Power Generation (Hydraulic, Gas and Steam Power Plant). 

4- Ships, Boats and Submarines. 

5- Airplanes and Hovercrafts: 
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i. Wing Surfaces to Produce Lift. 

ii. Jet Engines to Produce Thrust. 

iii. Fuselage Design for Minimum Drag. 

iv. Various Systems in the Air Craft (A/c, Fuel, Oil, Pneumatic). 

v. Control of the Airplane (Tail, Flaps, Ailerons, …). 

6- Cars and Motorcycles. 

i. Pneumatic tires. 

ii. Hydraulic Shock Absorbers. 

iii. Fuel System (Gasoline + Air). 

iv. Air Resistance Grates Drag on Car. 

v. Lubrication System. 

vi. Cooling System. 

vii. Aerodynamic Design of Car Profile for Minimum Drag. 

7- Design of Pipe Networks. 

8- Transport of Fluids. 

9- Air – Conditioning and Refrigeration Systems. 

10- Lubrication Systems. 

11- Design of Fluid Machinery (Fans, Blowers, Pumps, Compressors, Turbines, 

Windmills, ….). 

12- Bioengineering (Flow of Blood through Veins and Arteries). 

13- Fluid Control Systems. 

14- All Living Creatures Need Water (Fluid) for Life (We Made from Water Every 

Living Thing). 

 

1.3. Dimensions and Units 

A dimension is the measure by which a physical variable is expressed 

quantitatively. A unit is a particular way of attaching a number to the quantitative 

dimension. 

In fluid mechanics there are only four primary dimensions from which all other 

dimensions can be derived: mass, length, time, and temperature. These dimensions 

and their units in both systems are given in Table 1.1. Note that the kelvin unit uses 

no degree symbol. The braces around a symbol like [M] mean “the dimension” of 

mass. All other variables in fluid mechanics can be expressed in terms of [M], [L], 

[T], and [Θ]. For example, acceleration has the dimensions [LT
-2

]. 
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Table 1.1: Primary Dimensions in SI and BG Systems. 

 

 

 

 

 

A list of some important secondary variables in fluid mechanics, with dimensions 

derived as combinations of the four primary dimensions, is given in Table 1.2. 

 

Table 1.2: Secondary Dimensions in Fluid Mechanics. 

 

 

 

 

 

 

 

 

 

 

 

Example 1.1: 

A body weighs 1000 lbf when exposed to a standard earth gravity g = 32.174 ft/s
2
.  

(a) What is its mass in kg?  

(b) What will the weight of this body be in N if it is exposed to the moon’s 

standard acceleration gmoon = 1.62 m/s
2
? 

(c) How fast will the body accelerate if a net force of 400 lbf is applied to it on the 

moon or on the earth? 
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Solution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 1.2:  

A useful theoretical equation for computing the relation between pressure, 

velocity, and altitude in a steady flow of a nearly inviscid is the Bernoulli relation. 

                 

where Po= stagnation pressure, P = pressure in moving fluid, V = velocity, ρ = 

density, Z = altitude, g = gravitational acceleration. 

(a) Show that the Bernoulli relation satisfies the principle of dimensional 

homogeneity, which states that all additive terms in a physical equation must have 

the same dimensions. (b) Show that consistent units result without additional 

conversion factors in SI units. (c) Repeat (b) for BG units. 
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Solution: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 1.3:  

The empirical Robert’s formula for the average velocity V in uniform flow due to 

gravity down an open channel (BG units) is:      [   
    

 
     ⁄     ⁄  ] 

where R = hydraulic radius of channel, S = channel slope (tangent of angle that 

bottom makes with horizontal) and n is a constant for a given surface condition for 

the walls and bottom of the channel. Determine: 

(a) Is Robert’s formula dimensionally consistent?  

(b) Robert’s formula is commonly taken to be valid in BG units with n taken as 

dimensionless. Rewrite it in SI form. 
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Solution: 

 

 

 

 

 

 

 

 

 

 

 

 

1.4. Convenient Prefixes in Powers of 10 

Table 1.3 lists Convenient Prefixes 

for Engineering Units: 
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1.5. Thermodynamic Properties of a Fluid 

While the velocity field V is the most important fluid property, it interacts closely 

with the thermodynamic properties of the fluid. We have already introduced into 

the discussion the three most common such properties 

1. Pressure P: 

Pressure is the (compression) stress at a point in a static fluid. Next to velocity, the 

pressure is the most dynamic variable in fluid mechanics. 

 

2. Temperature T:  

Temperature is a measure of the internal energy level of a fluid. It may vary 

considerably during high-speed flow of a gas. Although engineers often use 

Celsius or Fahrenheit scales for convenience, many applications in this text require 

absolute (Kelvin or Rankine) temperature scales: 

°R = °F + 459.69 

K = °C + 273.16 

 

3. Density ρ: 

The density of a fluid, denoted by ρ (lowercase Greek “rho”), is its mass per unit 

volume. Density is highly variable in gases and increases nearly proportionally to 

the pressure level. Density in liquids is nearly constant; the density of water (about 

1000 kg/m
3
) increases only (1 %) if the pressure is increased by a factor of 200. 

Thus most liquid flows are treated analytically as nearly “incompressible”. 

In general, liquids are about three orders of magnitude more dense than gases at 

atmospheric pressure. The heaviest common liquid is mercury, and the lightest gas 

is hydrogen. Compare their densities at 20°C and 1 atm: 

Mercury: ρ = 13,580 kg/m
3
 ,             Hydrogen: ρ = 0.0838 kg/m

3
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They differ by a factor of (13,580/ 0.0838 = 162,000) Thus the physical parameters 

in various liquid and gas flows might vary considerably. 

 

4. Specific Weight γ: 

The specific weight of a fluid, denoted by γ (lowercase Greek “gamma”), is its 

weight per unit volume. Just as a mass has a weight W = mg, density and specific 

weight are simply related by gravity: 

                                                                                                                  (1.1) 

The units of γ are weight per unit volume, in N/m
3
. In standard earth gravity, g = 

9.807 m/s
2
. Thus, e.g., the specific weights of air and water at 20°C and 1 atm are 

approximately 

γ air = (1.205 kg/m
3
)(9.807 m/s

2
) = 11.8 N/m

3
  

γ water = (998 kg/m
3
)(9.807 m/s

2
) = 9790 N/m

3
 

 

5. Specific Gravity SG: 

Specific gravity, denoted by SG, is the ratio of a fluid density to standard reference 

fluid, water (for liquids), and air (for gases): 

      
    

    
 

    

           ⁄  
                                                                           (1.2) 

         
       

      
 

    

         ⁄  
  

For example, the specific gravity of mercury (Hg) is SGHg = 13,580/998 ≈ 13.6. 

Engineers find these dimensionless ratios easier to remember than the actual 

numerical values of density of a variety of fluids. 

 

6. State Relations for Gases: 

Thermodynamic properties are found both theoretically and experimentally to be 

related to each other by state relations which differ for each substance. As 
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mentioned, we shall confine ourselves here to single-phase pure substances, e.g., 

water in its liquid phase. 

All gases at high temperatures and low pressures (relative to their critical point) are 

in good agreement with the perfect-gas law 

       

                       

Since the above equation is dimensionally consistent, R has the same dimensions 

as specific heat, [m
2
/s

2
.°C or m

2
/s

2
.K, L

2
 T

-2 
Θ

-1
], or velocity squared per 

temperature unit (kelvin or degree Rankine). Each gas has its own constant R, 

equal to a universal constant Λ divided by the molecular weight 

     
 

    
  

where Λ = 8314 (m
2
/s

2
.K). Most applications in this subject are for air, with M = 

28.97: 

Rair = 287 (m
2
/s

2
.K) 

Standard atmospheric pressure is 101314.445 Pa, and standard temperature is 

15.556 °C. Thus standard air density is 

     
          

          
             

 

7. Viscosity 

It is the property of a fluid by virtue of which it offers resistance to shear. When a 

fluid is sheared, it begins to move at a strain rate inversely proportional to a 

property called its coefficient of viscosity μ. Consider a fluid element sheared in 

one plane by a single shear stress τ, as in Fig. 1.2. 

The shear strain angle δθ will continuously grow with time as long as the stress τ is 

maintained, the upper surface moving at speed δu larger than the lower. Such 
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common fluids as water, oil, and air show a linear relation between applied shear 

and resulting strain rate 

  
  

  
  

 

 

 

 

 

 

 

 

 

 

From the geometry of Fig. 1.2 we see that 

      
     

  
  

In the limit of infinitesimal changes, this becomes a relation between shear strain 

rate and velocity gradient 

  

  
 

  

  
  

The applied shear is also proportional to the velocity gradient for the common 

linear fluids. The constant of proportionality is the viscosity coefficient μ. 

   
  

  
  

  

  
  

The above equation is dimensionally consistent; therefore μ has dimensions of 

stress-time: [M/(LT)] and the SI unit is (kg/m.s). The linear fluids which follow the 

above equation (   
  

  
  

  

  
) are called Newtonian fluids, after Sir Isaac 

Newton, who first postulated this resistance law in 1687. Most common fluids such 

Figure 1.2: Shear stress causes continuous shear deformation in a fluid: a fluid element straining at a 

rate 𝛿𝜃 𝛿𝑡⁄ . 

It appears that there is a property that 

represents the internal resistance of a 

fluid to motion or the “fluidity,” and 

that property is the viscosity. 
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as water, air, gasoline, and oils are Newtonian fluids. Blood and liquid plastics are 

examples of non-Newtonian fluids. In one-dimensional shear flow of Newtonian 

fluids, shear stress can be expressed by the linear relationship as shown in this 

figure.  

There are two types of viscosity; “Dynamic (or 

Absolute) viscosity (μ)”, and the “Kinematic 

Viscosity (ν)”. Their definitions are; 

    
  

  
  

       

Units of Viscosity: 

μ: kg/m.s, N.s/m
2
, Pa.s, Poise (P)= g/cm.s= dyne.s/cm

2
, (1 (N.s/m

2
) = 10 (Poise)) 

ν: m
2
/s, Stoke = cm

2
/s. 

Example 1.4:  

The viscosity of a fluid is to be measured by a viscometer constructed of two 40-

cm-long concentric cylinders (see Figure below). The outer diameter of the inner 

cylinder is 12 cm, and the gap between the two cylinders is 0.15 cm. The inner 

cylinder is rotated at 300 rpm, and the torque is measured to be 1.8 N.m. 

Determine the viscosity of the fluid. 

Solution: 

Torque is T = FR (force times the moment arm, 

which is the radius R of the inner cylinder in this 

case), the tangential velocity is V = ωR (angular 

velocity times the radius), and taking the wetted 

surface area of the inner cylinder to be A = 2πRL by 

disregarding the shear stress acting on the two ends 

of the inner cylinder, torque can be expressed as 
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where L is the length of the cylinder and ṅ is the number of revolutions per unit 

time, which is usually expressed in rpm (revolutions per minute). Note that the 

angular distance traveled during one rotation is 2π rad, and thus the relation 

between the angular velocity in rad/min and the rpm is ω = 2πṅ. 

 

 

 

Example 1.5: 

A 50-cm × 30-cm × 20-cm block weighing 150 N is to be moved at a constant 

velocity of 0.8 m/s on an inclined surface with a friction coefficient of 0.27 as 

shown in the Figure below. (a) Determine the force F that needs to be applied in 

the horizontal direction. (b) If a 0.4-mm-thick oil film with a dynamic viscosity of 

0.012 Pa. s is applied between the block and inclined surface, determine the 

percent reduction in the required force. 

Solution: 

(a) 

 

 

 

 

 

 

 

Substituting Eq. (3) into Eq. (2) and solving for FN1 gives 

 

 

Then from Eq. (1): 

 



 Introductory Concepts of Fluid Mechanics                                     Chapter: One 

16 

 

(b) In this case, the friction force is 

replaced by the shear force applied on 

the bottom surface of the block due to 

the oil. Because of the no-slip 

condition, the oil film sticks to the 

inclined surface at the bottom and the 

lower surface of the block at the top. 

Then the shear force is expressed as 

 

 

 

 

 

Replacing the friction force by the shear force in part (a), 

 

 

 

 

 

 

 

8. Surface Tension and Capillary Effect 

8.1. Surface Tension (σ): 

Cohesion: Cohesion means intermolecular attraction between molecules of the 

same liquid. It enables a liquid to resist small amount of tensile stresses. Cohesion 

is a tendency of the liquid to remain as one assemblage of particles. “Surface 

Tension” is due to cohesion between particles at the free surface. 
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Adhesion: adhesion means attraction between the molecules of a liquid and the 

molecules of a solid boundary surface in contact with the liquid. The property 

enables a liquid to stick to another body. 

“Capillary action” is due to both cohesion and adhesion. 

Surface Tension (σ): is caused by the force of cohesion at the free surface. A 

liquid molecule in the interior of the liquid mass is surrounded by other molecules 

all around and is in equilibrium. At the free surface of the liquid, there are no 

liquid molecules above the surface to balance the force of the molecules below it. 

8.2. Some Applications of Surface Tension: 

The action of surface tension is to increase the pressure within droplet, bubble and 

liquid jet. To calculate the pressure sustained in these cases, a force balance is 

made, and as follows; 

 Droplet: 

For a section of half of spherical droplet as shown in 

Figure below, 

        

            

   
  

 
  

  

 Bubble: 

Soap bubbles have two surfaces on which  

Surface tension σ acts. From the free diagram 

We have, 

            [    ]                   
 

   
  

 
 

  

 
  

𝐹𝑃  𝜋𝑅  𝑃 

𝐹𝑆𝑇   𝜋𝑅𝜎 

𝐹𝑃  𝜋𝑅  𝑃 

𝐹𝑆𝑇   [ 𝜋𝑅𝜎] 
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Since the soap solution has a high value of surface tension σ, even with small 

pressure of blowing a soap bubble will tend to grow larger in diameter (hence 

formation of large soap bubbles).  

 

 Liquid Jet 

Let us consider a cylindrical liquid jet of diameter d (2R), 

And length L as shown in Figure, a semi-jet; 
 

         

       [   ] 

   
  

 
 

 
 

 

 

8.3. Capillarity 

Capillarity is a phenomenon by which a liquid (depending upon its specific 

gravity) rises into a thin glass tube above or below its general level. This 

phenomenon is due to the combined effect of "cohesion" and “adhesion" of liquid 

particles. Figure 1.3 shows the phenomenon of rising water in the tube of smaller 

diameters.  

Let, d = Diameter of the capillarity tube 

θ = Angle of contact of the water surface. 

W = weight (ρg) 

The capillarity rise (h) is usually calculated 

by applying equilibrium equation to the 

capillary tube shown in Figure 1.3, and as 

follows; 

 

Upward surface tension force (lifting force) = Weight of the water column in the 

tube (gravity force) 

𝐹𝑃   𝑅𝐿 𝑃 

𝐹𝑆𝑇   𝐿𝜎 

𝐹𝑆𝑇   𝐿𝜎 

Figure 1.3: The effect of capillary. 
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           →          

      

  
  

For water and glass: θ ≈ 0 

Hence the capillary rise of water in the glass tube, 

  
  

  
  

In case of mercury there is a capillary depression as 

shown in Figure 1.4 and the angle of depression is θ 

= 140°.  

 

The phenomenon of capillary effect can be explained microscopically by 

considering cohesive forces (the forces between like molecules, such as water and 

water) and adhesive forces (the forces between unlike molecules, such as water and 

glass). The liquid molecules at the solid–liquid interface are subjected to both 

cohesive forces by other liquid molecules and adhesive forces by the molecules of 

the solid. The relative magnitudes of these forces determine whether a liquid wets 

a solid surface or not. Obviously, the water molecules are more strongly attracted 

to the glass molecules than they are to other water molecules, and thus water tends 

to rise along the glass surface. The opposite occurs for mercury, which causes the 

liquid surface near the glass wall to be suppressed (Figure 1.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4: The effect of capillary. 

Figure 1.5: The capillary rise of water and the capillary fall of mercury in a small-diameter 

glass tube. 
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Example 1.5: 

A 0.03-in-diameter glass tube is inserted into kerosene at 68°F. The contact angle 

of kerosene with a glass surface is 26°. Determine the capillary rise of kerosene in 

the tube. 

Solution: 

The surface tension of kerosene-glass at 68°F (20 0.028×

0.068) = 0.00192 lbf/ft. The density of kerosene at 68°F is 

ρ = 51.2 lbm/ft
3
. The contact angle of kerosene with the 

glass surface is given to be 26. 

 

 

 

 

 

 

 

 

Example 1.6: 

In order to form a stream of bubbles, air is introduced through a nozzle into a tank 

of water at 20 °C. If the process requires 3 mm diameter bubbles to be formed, by 

how much the air pressure at the nozzle must exceed that of the surrounding water? 

What would be the absolute pressure inside the bubble if the surrounding water is 

at 100.3 kN/m
2
? Take surface tension of water at 20 °C= 0.0735 N/m. 

 

Solution: 

The excess pressure intensity of air over that of surrounding water,  

   
  

 
 

        

        
    

 

  
  

Absolute pressure inside the bubble, 

                                             

  

The end of Chapter One 
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Chapter Two 

Pressure Distribution in a Fluid 

 

2.1. Introduction 

In static fluids, no relative motion between the fluids particles exists, therefore no 

velocity gradients in the fluid exist, and hence no "shear stresses" exist. Only 

"normal stresses (pressure)" exist. In this chapter, the pressure distribution in a 

static fluid and its effects on surfaces and bodies submerged or floating in it will be 

investigated. 

Pressure is defined as a normal force exerted by a fluid per unit area. Since 

pressure is defined as force per unit area, it has the unit of newtons per square 

meter (N/m
2
), which is called a pascal (Pa) [N/m

2 
= Pa, Ibf/ft

2 
= Psf, Ibf/in

2 
= Psi]. 

1 bar = 10
5
 Pa = 0.1 MPa = 100 kPa 

1 atm = 101,325 Pa = 101.325 kPa = 1.01325 bars 

 

2.2. Absolute, gage, and vacuum pressures 

The actual pressure at a given position is called the absolute pressure, and it is 

measured relative to absolute vacuum (i.e., absolute zero pressure). Most pressure-

measuring devices, however, are calibrated to read zero in the atmosphere (Figure 

2.1), and so they indicate the difference between the absolute pressure and the local 

atmospheric pressure. This difference is called the gage pressure. Pressures below 

atmospheric pressure are called vacuum pressures and are measured by vacuum 

gages that indicate the difference between the atmospheric pressure and the 

absolute pressure. Absolute, gage, and vacuum pressures are all positive quantities 

and are related to each other by 
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                                                                                           2.1 

                                                                                            2.2 

 

 

 

 

 

 

 

 

 

 

Example 2.1 

A vacuum gage connected to a chamber reads 5.8 psi at a location where the 

atmospheric pressure is 14.5 psi. Determine the absolute pressure in the chamber. 

Solution: 

Pabs = Patm - Pvac = 14.5 - 5.8 = 8.7 psi 

Note that the local value of the atmospheric pressure is used when determining the absolute 

pressure. 

 

 

 

 

 

 

Figure 2.1: Absolute, gage, and vacuum pressures. 
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2.3. Pressure at a Point 

Pressure is the compressive force per unit area, and it gives the impression of 

being a vector. However, pressure at any point in a fluid is the same in all 

directions. That is, it has magnitude but not a specific direction, and thus it is a 

scalar quantity. This can be demonstrated by considering a small wedge-shaped 

fluid element of unit length (into the page) in equilibrium, as shown in Figure 2.2. 

The mean pressures at the three surfaces are Px, Pz, and Pn, and the force acting on 

a surface is the product of mean pressure and the surface area. From Newton’s 

second law, a force balance in the x- and z-directions gives 

 

 

 

 

 

 

 

 

 

∑         :                                                              2.3 

∑          :                   
 

 
                            2.4 

 

where ρ is the density and W = mg = ρ g ∆x ∆z/ 2 is the weight of the fluid 

element. Noting that the wedge is a right triangle, we have ∆x = ∆s cos θ and ∆z 

=∆s sin θ. Substituting these geometric relations and dividing Eq. 2.3 by ∆z and 

Eq. 2.4 by ∆x gives 

Figure 2.2: Equilibrium of a small wedge of fluid at rest. 
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Px - Pn = 0                                                                                  2.5 

Pz - Pn - ½ ρ g ∆z = 0                                                                  2.6 

The last term in Eq. 2.6 (½ ρ g ∆z) drops out as ∆z = 0 and the wedge becomes 

infinitesimal, and thus the fluid element shrinks to a point. Then combining the 

results of these two relations gives 

Px = Pz = Pn = P                                                                       2.7 

regardless of the angle θ. We can repeat the analysis for an element in the xz-plane 

and obtain a similar result. Thus we conclude that the pressure at a point in a fluid 

has the same magnitude in all directions. It can be shown in the absence of shear 

forces that this result is applicable to fluids in motion as well as fluids at rest. 

 

2.4. Variation of Pressure with Depth 

 

Pressure in a fluid increases with depth because 

more fluid rests on deeper layers, and the effect of 

this “extra weight” on a deeper layer is balanced 

by an increase in pressure (see Figure 2.3). 

 

 

To obtain a relation for the variation of pressure with depth, consider a rectangular 

fluid element of height ∆z, length ∆x, and unit depth (into the page) in equilibrium, 

as shown in Figure 2.4. Assuming the density of the fluid ρ to be constant, a force 

balance in the vertical z-direction gives 

∑         :                                                 2.8 

where W = mg = ρg ∆x ∆z is the weight of the fluid element. Dividing by ∆x and 

rearranging gives 

Figure 2.3: The pressure of a fluid at rest increases 

with depth (as a result of added weight). 



Pressure Distribution in a Fluid                                                         Chapter: Two 

6 

 

 

∆P = P2 - P1 = ρg ∆z = γs ∆z                                                                   2.9 

 

where γs = ρg is the specific weight of the fluid. Thus, 

we conclude that the pressure difference between two 

points in a constant density fluid is proportional to the 

vertical distance ∆z between the points and the density ρ 

of the fluid. 

 

 

 

If we take point ① to be at the free surface of a liquid open 

to the atmosphere (Figure 2.5), where the pressure is the 

atmospheric pressure Patm, then the pressure at a depth h 

from the free surface becomes 

P = Patm - ρgh     or        Pgage = ρgh             2.10  

 

 

The pressure difference between points ① a d ② can be determined by integration 

to be 

           ∫      
 

 
                                                          2.11 

For constant density and constant gravitational acceleration, this relation reduces to 

Equation 2.9, as expected. A consequence of the pressure in a fluid remaining 

constant in the horizontal direction is that the pressure applied to a confined fluid 

increases the pressure throughout by the same amount. This is called Pascal’s law, 

after Blaise Pascal (1623–1662). 

Figure 2.4: Free-body diagram of a rectangular 

fluid element in equilibrium. 

Figure 2.5: Pressure in a liquid at rest increases 

linearly with distance from the free surface. 
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We state the following conclusions about a hydrostatic condition: 

Pressure in a continuously distributed uniform static fluid varies only with 

vertical distance and is independent of the shape of the container. The pressure 

is the same at all points on a given horizontal plane in the fluid. The pressure 

increases with depth in the fluid as shown in Figure 2.6. 

 

 

 

 

 

 

 

 

 

 

 

2.5. Pressure Measurements 

2.5.1. The Manometer 

Manometer is commonly used to measure small and moderate pressure 

differences. A manometer mainly consists of a glass or plastic U-tube containing 

one or more fluids such as mercury, water, alcohol, or oil. To keep the size of the 

manometer to a manageable level, heavy fluids such as mercury are used if large 

pressure differences are anticipated. 

Consider the manometer shown in Figure 2.7 that is used to measure the pressure 

in the tank. Since the gravitational effects of gases are negligible, the pressure 

Figure 2.6: Hydrostatic-pressure distribution. Points a, b, c, and d are at equal depths in water 

and therefore have identical pressures. Points A, B, and C are also at equal depths in water and 

have identical pressures higher than a, b, c, and d. Point D has a different pressure from A, B, 

and C because it is not connected to them by a water path.  
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anywhere in the tank and at position 1 has the same value. Furthermore, since 

pressure in a fluid does not vary in the horizontal direction within a fluid, the 

pressure at point 2 is the same as the pressure at point 1, P2 = P1. 

The differential fluid column of height h is in static 

equilibrium, and it is open to the atmosphere. Then 

the pressure at point 2 is determined directly from 

Equation 2.10 to be 

 

P2 = Patm + ρgh                         2.12 

 

where ρ is the density of the fluid in the tube. Note that the cross-sectional area of 

the tube has no effect on the differential height h, and thus the pressure exerted by 

the fluid.  

Example 2.2 

A manometer is used to measure the pressure in a 

tank. The fluid used has a specific gravity of 0.85, 

and the manometer column height is 55 cm, as 

shown in Figure 2.8. If the local atmospheric 

pressure is 96 kPa, determine the absolute pressure 

within the tank. 

Solution: 

The density of the fluid is obtained by multiplying its specific gravity by the 

density of water, which is taken to be 1000 kg/m
3
: 

ρ = SG (ρH2O) = (0.85)(1000 kg/m
3
) = 850 kg/m

3
 

 

 

 

Figure 2.7: The basic manometer. 

Figure 2.8: Schematic for Example 2.2. 
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Many engineering problems and some manometers involve multiple immiscible 

fluids of different densities stacked on top of each other. Such systems can be 

analyzed easily by remembering that  

(1) The pressure change across a fluid column of height h is ∆P = ρgh. 

(2) Pressure increases downward in a given fluid and decreases upward (i.e., Pbottom 

> Ptop).  

(3) Two points at the same elevation in a continuous fluid at rest are at the same 

pressure. 

For example, the pressure at the bottom of the tank in 

Figure 2.9 can be determined by starting at the free 

surface where the pressure is Patm, moving downward 

until we reach point 1 at the bottom, and setting the 

result equal to P1. It gives 

 

Patm + ρ1gh1 + ρ2gh2 + ρ3gh3 = P1          2.13 

 

Example 2.3 

Consider the system shown in Figure 2.10. If a change of 0.7 kPa in the pressure of 

air causes the brine-mercury interface in the right column to drop by 5 mm in the 

brine level in the right column while the pressure in the brine pipe remains 

constant, determine the ratio of A2/A1. 

Solution: 

Starting with the air pressure (point A) and moving along the tube by adding (as 

we go down) or subtracting (as we go up) the ρgh terms until we reach the brine 

pipe (point B), and setting the result equal to PB before and after the pressure 

change of air give 

 Figure 2.9: In stacked-up fluid 

layers, the pressure change across 

a fluid layer of density ρ and 

height h is ρgh. 
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where ΔhHg and Δhbr are the changes in the 

differential mercury and brine column heights, 

respectively, due to the drop in air pressure. 

Noting also that the volume of mercury is 

constant, we have A1ΔhHg,left = A2ΔhHg,right and 

 

 

 

 

 

 

 

 

 

Example 2.4 

The water in a tank is pressurized by air, and the pressure is measured by a 

multifluid manometer as shown in Figure 2.11. The tank is located on a mountain 

at an altitude of 1400 m where the atmospheric pressure is 85.6 kPa. Determine the 

air pressure in the tank if h1 = 0.1 m, h2 = 0.2 m, and h3 = 0.35 m. Take the 

 Figure 2.10: Schematic for Example 2.3. 
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densities of water, oil, and mercury to be 1000 kg/m
3
, 850 kg/m

3
, and 13,600 

kg/m
3
, respectively. 

 

Solution: 

Starting with the pressure at point 1 at the air–

water interface, moving along the tube by adding 

or subtracting the rgh terms until we reach point 2, 

and setting the result equal to Patm since the tube 

is open to the atmosphere gives 

 

 

 

 

 

 

 

 

 

2.5.2. Atmospheric Pressure Measurement 

Atmospheric pressure is measured by a device 

called a barometer; thus, the atmospheric 

pressure is often referred to as the barometric 

pressure. Barometer consists of a glass or 

Perspex tube with one open and immersed in a 

bath of mercury, see Figure 2.12. 

 

 Figure 2.11: Schematic for Example 2.4. 

 Figure 2.12: The basic barometer. 
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The Italian Evangelista Torricelli (1608–1647) was the first to conclusively utilize 

the basic barometer to measure the atmospheric pressure by writing a force balance 

in the vertical direction gives 

Patm = ρgh                                                                      2.14 

A frequently used pressure unit is the standard atmosphere, which is defined as the 

pressure produced by a column of mercury 760 mm in height at 0°C (ρHg = 13,595 

kg/m
3
) under standard gravitational acceleration (g = 9.807 m/s

2
). The standard 

atmospheric pressure, for example, is 760 mmHg at 0°C. The unit mmHg is also 

called the torr in honor of Torricelli. Therefore, 1 atm = 760 torr and 1 torr = 133.3 

Pa. 

Example 2.5 

Determine the atmospheric pressure at a location where the barometric reading is 

740 mm Hg and the gravitational acceleration is g = 9.81 m/s
2
. Assume the 

temperature of mercury to be 10°C, at which its density is 13,570 kg/m
3
. 

Solution: 

 

 

 

 

 

2.5.3. Inclined Manometer 

The inclined manometer is frequently used for measuring small difference in gage 

pressure. It is adjusted to read zero, by moving the inclined scale. Since the 

inclined tube requires a greater displacement of the meniscus for given pressure 

difference than a vertical tube, it offers greater accuracy in reading the scale. 
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Example 2.6 

For the Figure 2.13, determine the pressure 

difference between pipes A and B. Take 

Z1= 0.45 m, Z2= 0.225 m, Z3= 0.675 m, 

Z4= 0.3 m. Neglect pressure due to 

pressure of air column in the inclined tube. 

Solution: 

Starting from point A, the governing 

Manometric equation is: 

PA  + γwZ1 - γm (Z3 + Z4 sin45°) = PB 

PA - PB = - γwZ1 + γm (Z3 + Z4 sin45°) 

= - (1000 × 9.81) × 0.45 + (13600 × 9.81) × (0.675 + 0.3 × sin45°)  divided by 1000 

= - 9.81× 0.45 + 13.6 × 9.81 × (0.675 + 0.3 × sin45°) 

= - 4.414 + 118.357= 113.943 kN/m
2
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 2.13: Schematic for Example 2.6. 
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2.6. Hydrostatic Forces on Submerged Plane Surfaces 

The plane of this surface (normal to 

the page) intersects the horizontal 

free surface with an angle θ, and we 

take the line of intersection to be 

the x-axis as shown Figure 2.14. 

The absolute pressure above the 

liquid is Po, which is the local 

atmospheric pressure Patm if the 

liquid is open to the atmosphere 

(but Po may be different than Patm if 

the space above the liquid is 

evacuated or pressurized).  

Then the absolute pressure at any point on the plate is P = Po + ρgh = Po + ρg (ysinθ) 

The resultant hydrostatic force FR acting on the surface is determined by integrating 

the force P dA acting on a differential area dA over the entire surface area, 

   ∫      
 

∫                 
 

           ∫     
 

       2.15 

But the first moment of area (∫     
 

) is related to the y-coordinate of the centroid 

(or center) of the surface by        
 

 
∫     
 

 , Substituting, 

FR = (Po + ρg yc sinθ) A = (Po + ρghc) A = Pc A = Pave A                            2.16 

where Pc = Po + ρghc is the pressure at the 

centroid of the surface, which is equivalent 

to the average pressure on the surface, and 

hc = yc sinθ is the vertical distance of the 

centroid from the free surface of the liquid 

(Figure 2.15). 

Figure 2.14: Hydrostatic force on an inclined plane 

surface completely submerged in a liquid. 

Figure 2.15: The pressure at the centroid of a surface 

is equivalent to the average pressure on the surface. 
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Thus we conclude that: 

The magnitude of the resultant force acting on a plane surface of a completely 

submerged plate in a homogeneous (constant density) fluid is equal to the 

product of the pressure Pc at the centroid of the surface and the area A of the 

surface (see Figure 2.16). 

 

 

 

 

 

 

 

 

 

 

 

 

The point of intersection of the line of action of the resultant force and the surface 

is the center of pressure. The vertical location of the line of action is determined 

by equating the moment of the resultant force to the moment of the distributed 

pressure force about the x-axis. It gives 

     ∫       

 

∫                  

 

  ∫     
 

       ∫      

 

 

2.17 

Or                                                                                           2.18 

 

Figure 2.16: The resultant force acting on a plane surface is equal to the product of the pressure 

at the centroid of the surface and the surface area, and its line of action passes through the center 

of pressure. 
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where yP is the distance of the center of pressure from the x-axis (point O in Figure 

2.16) and is the second moment of area (also called the area moment of inertia) 

about the x-axis. The second moments of area are widely available for common 

shapes in engineering handbooks, but they are usually given about the axes passing 

through the centroid of the area. 

The second moments of area about two parallel axes are related to each other by 

the parallel axis theorem, which in this case is expressed as 

               
                                                        2.19 

where Ixx,c is the second moment of area about the x-axis passing through the 

centroid of the area and yc (the y-coordinate of the centroid) is the distance 

between the two parallel axes. Substituting the FR relation from Equation (2.16) 

and the Ixx,O relation from Equation (2.19) into Equation (2.18) and solving for yP 

gives 

       
      

                 
                                                      2.20 

For Po = 0, which is usually the case when the atmospheric pressure is ignored, it 

simplifies to 

       
      

   
                                                                            2.21 

Knowing yP, the vertical distance of the center of pressure from the free surface is 

determined from hP = yP sin θ. The Ixx,c values for some common areas are given in 

Figure 2.17. 
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Example 2.7 

A circular plate 1.5 m diameter is 

submerged in water with its greatest 

and least depths below the surface 

being 2 m and 0.75 m respectively as 

shown in Figure 2.8. Determine: (i) 

The total pressure on one face of the 

plate. (ii) The position of the centre of 

pressure. 

Solution:  

 

 

Figure 2.17: The centroid and the centroidal moments of inertia for some common geometries. 

hc 

Figure 2.18: Schematic for Example 2.7. 
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Distance of centre of gravity from free surface 

hc= SN + GN sinθ 

hc= 0.75 + 0.75 sinθ 

     
  

  
 

     

  
 

      

   
         

hc= 0.75 + 0.75 × 0.8333= 1.375 m 

i) Total Pressure (P):  

FP = ρw g A hc 

= 9.81×1000×1.767×1.375 = 23830 N 

= 23.830 kN 

ii) The centre of pressure (hp) 

   
        

  

   
     

   
   ⁄              

           
                

 

 

Example 2.8 

A tank of oil has a right-triangular panel 

near the bottom, as shown in Figure 2.19. 

Neglecting Pa, find the (a) Hydrostatic 

force and (b) The location of pressure 

centre on the panel. 

 

 

 
Figure 2.19: Schematic for Example 2.8. 
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Solution: 

The centroid is one-third up (4 m) and one-third over (2 m) from the lower left corner, as shown. 

The area is 

 

 

 

 

 

 

 

 

 

The position of pressure centre on the panel is given as, 

 

 

 

 

Example 2.9 

The gate in Figure 2.20 is 5 ft wide, is hinged 

at point B, and rests against a smooth wall at 

point A. Compute (a) the force on the gate 

due to seawater pressure, (b) the horizontal 

force P exerted by the wall at point A, and (c) 

the reactions at the hinge B. 

 

 

 

Figure 2.20: Schematic for Example 2.9. 
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Solution: 

By geometry the gate is 10 ft long from A to B, and its centroid is halfway 

between, or at elevation 3 ft above point B. The depth hCG is thus [15 - 3 = 12 ft]. 

The gate area is [5(10) = 50 ft
2
]. Neglect pa as acting on both sides of the gate. The 

hydrostatic force on the gate is 

 

 

First we must find the center of pressure of F. 

A free-body diagram of the gate is shown in 

the Figure. The gate is a rectangle, hence 

 

 

 

The distance l from the CG to the CP is given as below since Pa is neglected. 

 

 

The distance from point B to force F is thus [10 - l - 5 = 4.583 ft]. Summing 

moments counterclockwise about B gives 

 

 

With F and P known, the reactions Bx and Bz are found by summing forces on the 

gate 
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2.7. Special Case: Submerged Rectangular Plate 

Consider a completely submerged rectangular flat plate of height b and width a 

tilted at an angle u from the horizontal and whose top edge is horizontal and is at a 

distance s from the free surface along the plane of the plate, as shown in Figure 

2.21. The resultant hydrostatic force on the upper surface is equal to the average 

pressure, which is the pressure at the midpoint of the surface, times the surface 

area A. That is, 

 

 

 

 

 

 

 

 

 

 

 

Tilted rectangular plate:  FR = PC A = [Po + ρg (s + b/2) sinθ] ab                     2.22 

The force acts at a vertical distance of [hP = yP sinθ] from the free surface directly 

beneath the centroid of the plate where, 

     
 

 
 [

     ⁄

[  
 

 
 

  
      

]  
]  

     
 

 
 [

  

[  
 

 
 

  
      

]  
]                                                                    2.23 

Figure 2.21: Hydrostatic force acting on the top surface of a submerged rectangular plate for tilted, 

vertical, and horizontal cases. 

(a) Tilted plate (b) Vertical plate (c) Horizontal plate 



Pressure Distribution in a Fluid                                                         Chapter: Two 

22 

 

When the upper edge of the plate is at the free surface and thus s = 0, Equation 

2.22 reduces to 

Tilted rectangular plate (s = 0):    FR = [Po + ρg (b sinθ)/2] ab                        2.24 

For a completely submerged vertical plate (θ = 90°) whose top edge is horizontal, 

the hydrostatic force can be obtained by setting sinθ = 1 (see Figure 2.21 (b) for 

more details). 

Vertical rectangular plate:    FR = [Po + ρg (s + b/2)] ab                               2.25 

Vertical rectangular plate (s = 0):    FR = [Po + ρgb/2] ab                             2.26 

 

When the effect of Po is ignored since it acts on both sides of the plate, the 

hydrostatic force on a vertical rectangular surface of height b whose top edge is 

horizontal and at the free surface is [FR = ρgab
2
/2] acting at a distance of 2b/3 from 

the free surface directly beneath the centroid of the plate. 

The pressure distribution on a submerged horizontal surface is uniform, and its 

magnitude is [P = Po + ρgh], where h is the distance of the surface from the free 

surface. Therefore, the hydrostatic force acting on a horizontal rectangular surface 

is 

Horizontal rectangular plate: FR = [Po + ρgh] ab                             2.27 

and it acts through the midpoint of the plate (see Figure 2.21 (c) for more details). 

 

Example 2.10: 

A rectangular plate 3 m long and 1 m wide is 

immersed vertically in water in such a way that its 

3 m side is parallel to the water surface and is 1 m 

below it as shown in Figure 2.22. Find (a) Total 

pressure on the plate (b) Position of centre of 

pressure.  
Figure 2.22: Schematic for Example 2.10. 

hc hp 

C 
Cp 
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Solution: 

Width of the plane surface, b = 3m 

Depth of the plane surface, d = 1m 

Area of the plane surface, A= b × d = 3 × 1= 3m
2 

So, hc= 1 + 0.5 = 1.5 m 
 

(a) Total pressure force 

P = ρ g A hc = 9.81 × 1000 × 3 × 1.5 = 44140 N= 44.14 kN 

 

(b) Centre of pressure, hp 

   
     

   
     

      
    

  
 

    

  
        

  

   
    

     
              

 

Example 2.11: 

A 3-m-high, 6-m-wide rectangular gate is hinged at the 

top edge at A and is restrained by a fixed ridge at B as 

shown in Figure 2.23. Determine the hydrostatic force 

exerted on the gate by the 5-m-high water and the 

location of the pressure center. 

 

Solution 

The average pressure on a surface is the pressure at the centroid (midpoint) of the surface, and 

multiplying it by the plate area gives the resultant hydrostatic force on the gate, 

FR= P A=ρ g hc A 

 

                                                                                                  = 618 kN 

 

The vertical distance of the pressure center from the free surface of water is 

 

 

Figure 2.23: Schematic for Example 2.11. 
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2.8. Hydrostatic forces on submerged curved surfaces 

For a submerged curved surface, the determination of the resultant hydrostatic 

force is more involved since it typically requires the integration of the pressure 

forces that change direction along the curved surface. 

The easiest way to determine the resultant hydrostatic force FR acting on a two-

dimensional curved surface is to determine the horizontal and vertical components 

FH and FV separately. This is done by considering the free-body diagram of the 

liquid block enclosed by the curved surface and the two plane surfaces (one 

horizontal and one vertical) passing through the two ends of the curved surface, as 

shown in Figure 2.24. 

      

 

 

 

 

 

 

 

 

 

 

The weight of the enclosed liquid block of volume V is simply W = ρgV, and it 

acts downward through the centroid of this volume. Noting that the fluid block is 

in static equilibrium, the force balances in the horizontal and vertical directions 

give 

Horizontal force component on curved surface:     FH = Fx                     (2.28) 

Vertical force component on curved surface:         FV = Fy + W             (2.29) 

Figure 2.24: Determination of the hydrostatic force acting on a submerged curved surface. 
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where the summation [Fy + W] is a vector addition (i.e., add magnitudes if both act 

in the same direction and subtract if they act in opposite directions). 

The magnitude of the resultant hydrostatic force acting on the curved surface is, 

   √   
    

  , and the tangent of the angle it makes with the horizontal is 

      ⁄ . The exact location of the line of action of the resultant force (e.g., its 

distance from one of the end points of the curved surface) can be determined by 

taking a moment about an appropriate point. 

 

Example 2.12: 

A long solid cylinder of radius 0.8 m hinged at point A is used as an automatic 

gate, as shown in Figure 2.25. When the water level reaches 5 m, the gate opens by 

turning about the hinge at point A. Determine (a) the hydrostatic force acting on 

the cylinder and its line of action when the gate opens and (b) the weight of the 

cylinder per m length of the cylinder.  

      

 

 

 

 

 

 

 

 

 

 

 

Solution: 

 

Figure 2.25: Schematic for Example 2.12 and the free-body diagram of the fluid underneath the cylinder. 



Pressure Distribution in a Fluid                                                         Chapter: Two 

26 

 

Horizontal force on vertical surface:    

    

 

 

Vertical force on horizontal surface (upward): 

 

 

 

Weight of fluid block per m length (downward): 

 

 

 

Therefore, the net upward vertical force is 

 

Then the magnitude and direction of the hydrostatic force acting on the cylindrical 

surface become, 

 

 

Taking a moment about point A at the location of the hinge and equating it to zero 

gives 

 

 

 

 

 

 

 



Pressure Distribution in a Fluid                                                         Chapter: Two 

27 

 

2.9. Fluids in rigid-body motion 

Many fluids such as milk and gasoline are transported in tankers. In an accelerating 

tanker, the fluid rushes to the back, and some initial splashing occurs. But then a 

new free surface (usually non-horizontal) is formed, each fluid particle assumes the 

same acceleration, and the entire fluid moves like a rigid body. No shear stresses 

develop within the fluid body since there is no deformation and thus no change in 

shape. Rigid-body motion of a fluid also occurs when the fluid is contained in a 

tank that rotates about an axis. 

Consider a differential rectangular fluid element of side lengths dx, dy, and dz in 

the x-, y-, and z-directions, respectively, with the z-axis being upward in the 

vertical direction (see Figure 2.26). Noting that the differential fluid element 

behaves like a rigid body, Newton’s second law of motion for this element can be 

expressed as 

        

 

 

 

 

 

 

 

 

 

  ⃗       ⃗                                                                                            (2.30) 

where                    is the mass of the fluid element,  ⃗ is the 

acceleration, and   ⃗ is the net force acting on the element. 

 
 

Figure 2.26: The surface and body forces acting on a differential fluid element in the vertical direction. 
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Taking the pressure at the center of the element to be P, the pressures at the top 

and bottom surfaces of the element can be expressed as P + (∂P/∂z) dz/2 and P - 

(∂P/∂z) dz/2, respectively. Noting that the pressure force acting on a surface is 

equal to the average pressure multiplied by the surface area, the net surface force 

acting on the element in the z-direction is the difference between the pressure 

forces acting on the bottom and top faces, 

                                                                                                      

                                                                                                           (2.31) 

Similarly, the net surface forces in the x- and y-directions are 

                                                                                                           (2.32) 

 

Substituting into Newton’s second law of motion   ⃗       ⃗                ⃗ 

and canceling dx dy dz, the general equation of motion for a fluid that acts as a 

rigid body (no shear stresses) is determined to be 

Rigid-body motion of fluids:  ⃗⃗⃗     ⃗⃗     ⃗                                      (2.33) 

Where,  ⃗⃗⃗  
  

  
 ⃗  

  

  
 ⃗  

  

  
 ⃗⃗ 

Resolving the vectors into their components, this relation can be expressed more 

explicitly as 

  

  
 ⃗  

  

  
 ⃗  

  

  
 ⃗⃗     ⃗⃗        ⃗     ⃗     ⃗⃗                                     (2.34) 

or, in scalar form in the three orthogonal directions, as 

 

Accelerating fluids: 
  

  
      , 

  

  
      , 

  

  
                 (2.35) 

 

where   ,   , and    are accelerations in the x-, y-, and z-directions, respectively. 
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Special Case 1: Fluids at Rest 

For fluids at rest or moving on a straight path at constant velocity, all components 

of acceleration are zero, and the relations in Equation (2.35) reduce to 

Fluids at rest: 
  

  
   , 

  

  
   , 

  

  
                                                     (2.36) 

which confirm that, in fluids at rest, the pressure remains constant in any horizontal 

direction (P is independent of x and y) and varies only in the vertical direction as a 

result of gravity [and thus P = P(z)]. These relations are applicable for both 

compressible and incompressible fluids. 

Special Case 2: Free Fall of a Fluid Body 

A freely falling body accelerates under the influence of gravity. When the air 

resistance is negligible, the acceleration of the body equals the gravitational 

acceleration, and acceleration in any horizontal direction is zero. Therefore,   = 

  =0 and      . Then the equations of motion for accelerating fluids (Equation 

2.35) reduce to 

Free-falling fluids: 
  

  
 

  

  
 

  

  
          P= Constant 

Therefore, in a frame of reference moving with the fluid, it behaves like it is in an 

environment with zero gravity. Also, the gage pressure in a drop of liquid in free 

fall is zero throughout. (Actually, the gage pressure is slightly above zero due to 

surface tension, which holds the drop intact.) 

When the direction of motion is reversed and the fluid is forced to accelerate 

vertically with [az = + g] by placing the fluid container in an elevator or a space 

vehicle propelled upward by a rocket engine, the pressure gradient in the z-

direction is          ⁄ . Therefore, the pressure difference across a fluid layer 

now doubles relative to the stationary fluid case (see Figure 2.27). 
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2.10. Acceleration on a Straight Path 

Consider a container partially filled with a liquid. The container is moving on a 

straight path with a constant acceleration. We take the projection of the path of 

motion on the horizontal plane to be the x-axis, and the projection on the vertical 

plane to be the z-axis, as shown in Figure 2.28. The x- and z-components of 

acceleration are ax and az. There is no movement in the y-direction, and thus the 

acceleration in that direction is zero, ay = 0. Then the equations of motion for 

accelerating fluids (Equation 2.35) reduce to 

 

 

 

 

 

 

 

 

 

(a) Free fall of a liquid 

Figure 2.27: The effect of acceleration on the pressure of a liquid during free fall and upward 

acceleration. 

(b) Upward acceleration of a liquid with az = +g 

 

Figure 2.28: Rigid-body motion of a 

liquid in a linearly accelerating tank. 
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                 ,        

  

  
             , and            

  

  
          

Therefore, pressure is independent of y. Then the total differential of P = P(x, z), 

which is      ⁄          ⁄    , becomes 

                                                                                 (2.37) 

For ρ = constant, the pressure difference between two points 1 and 2 in the fluid is 

determined by integration to be 

                                                                 (2.38) 

Taking point 1 to be the origin (x = 0, z = 0) where the pressure is Po and point 2 to 

be any point in the fluid (no subscript), the pressure distribution can be expressed 

as, 

Pressure variation:                                                    (2.39) 

The vertical rise (or drop) of the free surface at point 2 relative to point 1 can be 

determined by choosing both 1 and 2 on the free surface (so that P1 = P2), and 

solving Equation (2.38) for (z2 - z1) as shown Figure 2.29, 

Vertical rise of surface:              
  

    
                     (2.40) 

 

where zs is the z-coordinate of the liquid’s free 

surface. The equation for surfaces of constant 

pressure, called isobars, is obtained from 

Equation 2.37 by setting dP = 0 and replacing 

z by zisobar, which is the z-coordinate (the 

vertical distance) of the surface as a function 

of x. It gives 

Surfaces of constant pressure: 

        

  
  

  

    
           Figure 2.29: Lines of constant pressure 

(which are the projections of the surfaces 

of constant pressure on the xz - plane) in a 

linearly accelerating liquid, and the 

vertical rise. 
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Thus we conclude that the isobars (including the free surface) in an incompressible 

fluid with constant acceleration in linear motion are parallel surfaces whose slope 

in the xz - plane is 

Slope of isobars:       
        

  
  

  

    
   a                             (2.41) 

 

Example 2.13: 

An 80-cm-high fish tank of cross section 2 m × 0.6 m that is initially filled with 

water is to be transported on the back of a truck (see Figure 2.30). The truck 

accelerates from 0 to 90 km/h in 10 s. If it is desired that no water spills during 

acceleration determine the allowable initial water height in the tank. Would you 

recommend the tank to be aligned with the long or short side parallel to the 

direction of motion?  

Solution: 

We take the x-axis to be the direction of 

motion, the z-axis to be the upward vertical 

direction, and the origin to be the lower left 

corner of the tank. Noting that the truck goes 

from 0 to 90 km/h in 10 s, the acceleration of 

the truck is 

    

 

The tangent of the angle the free surface makes with the horizontal is 

      

 

The maximum vertical rise of the free surface occurs at the back of the tank, and 

the vertical mid-plane experiences no rise or drop during acceleration since it is a 

plane of symmetry. Then the vertical rise at the back of the tank relative to the 

mid-plane for the two possible orientations becomes 

Figure 2.30: Schematic for Example 2.13. 
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2.11. Rotation in a Cylindrical Container 

We know from experience that when a glass filled with water is rotated about its 

axis, the fluid is forced outward as a result of the so-called centrifugal force, and 

the free surface of the liquid becomes concave. This is known as the forced vortex 

motion. 

Consider a vertical cylindrical container partially filled with a liquid. The container 

is now rotated about its axis at a constant angular velocity of ω, as shown in Figure 

2.31. After initial transients, the liquid will move as a rigid body together with the 

container. There is no deformation, and thus there can be no shear stress, and 

every fluid particle in the container moves with the same angular velocity. 

 

 The centripetal acceleration of a fluid particle rotating 

with a constant angular velocity of ω at a distance r from 

the axis of rotation is (rω
2
) and is directed radially toward 

the axis of rotation (negative r-direction). That is, ar = -r 

ω
2
. There is symmetry about the z-axis, which is the axis 

of rotation, and thus there is no θ dependence. Then P = 

P(r, z) and aθ = 0. Also, az = 0 since there is no motion in 

the z-direction. Then the equations of motion for rotating 

fluids (Equation 2.35) reduce to 

 

 Figure 2.31: Rigid-body motion of a liquid 

in a rotating vertical cylindrical container. 
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                                                                                                         (2.42) 

 

Then the total differential of P = P(r, z), which is         ⁄          ⁄    , 

becomes 

                                                                                         (2.43) 

The equation for surfaces of constant pressure is obtained by setting dP = 0 and 

replacing z by zisobar, which is the z-value (the vertical distance) of the surface as a 

function of r. It gives 

        

  
 

   

 
                                                                                         (2.44)       

Integrating, the equation for the surfaces of constant pressure is determined to be 

 

Surfaces of constant pressure:         
    

  
                                (2.45)       

 

which is the equation of a parabola. Thus we conclude 

that the surfaces of constant pressure, including the free 

surface, are paraboloids of revolution as shown in Figure 

(2.32).  

The value of the integration constant C1 is different for 

different paraboloids of constant pressure (i.e., for 

different isobars). For the free surface, setting r = 0 in 

Equation 2.45 gives zisobar(0) = C1 = hc, where hc is the 

distance of the free surface from the bottom of the 

container along the axis of rotation (Figure 2.32). Then 

the equation for the free surface becomes 

   
    

  
                                                            (2.46) 

Figure 2.32: Surfaces of constant 

pressure in a rotating liquid. 

hc 
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where zs is the distance of the free surface from the bottom of the container at 

radius r. The underlying assumption in this analysis is that there is sufficient liquid 

in the container so that the entire bottom surface remains covered with liquid. 

The volume of a cylindrical shell element of radius r, height zs, and thickness dr is 

          . Then the volume of the paraboloid formed by the free surface is 

 

                                                                                                           (2.47) 

 

Since mass is conserved and density is constant, this volume must be equal to the 

original volume of the fluid in the container, which is [        ]. 

where ho is the original height of the fluid in the container with no rotation. Setting 

these two volumes equal to each other, the height of the fluid along the centerline 

of the cylindrical container becomes 

      
    

  
  

Then the equation of the free surface becomes 

Free surface:       
  

  
                                                          (2.46) 

The maximum vertical height occurs at the edge where r = R, and the maximum 

height difference between the edge and the center of the free surface is determined 

by evaluating zs at r = R and also at r = 0, and taking their difference, 

Maximum height difference:                     
  

  
               (2.47) 

When ρ = constant, the pressure difference between two points 1 and 2 in the fluid 

is determined by integrating [dP = ρ r ω
2
 dr - ρ g dz]. This yields 

      
   

 
   

    
                                                                (2.48) 
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Taking point 1 to be the origin (r = 0, z = 0) where the pressure is Po and point 2 to 

be any point in the fluid (no subscript), the pressure distribution can be expressed 

as 

Pressure variation:           
   

 
                                   (2.49) 

In any horizontal plane, the pressure difference between the center and edge of the 

container of radius R is [∆P = ρω
2
R

2
/2]. 

Example 2.14: 

A 20-cm-diameter, 60-cm-high vertical cylindrical container, shown in Figure 

2.33, is partially filled with 50-cm-high liquid whose density is 850 kg/m
3
. Now 

the cylinder is rotated at a constant speed. Determine the rotational speed at which 

the liquid will start spilling from the edges of the container. 

Solution: 

Taking the center of the bottom surface of the rotating 

vertical cylinder as the origin (r = 0, z = 0), the equation for 

the free surface of the liquid is given as 

 

    

Then the vertical height of the liquid at the edge of the 

container where r = R becomes 

    

 

where ho = 0.5 m is the original height of the liquid before rotation. Just before the 

liquid starts spilling, the height of the liquid at the edge of the container equals the 

height of the container, and thus zs (R) = 0.6 m. Solving the last equation for v and 

substituting, the maximum rotational speed of the container is determined to be 

     

 

 

 

Figure 2.33: Schematic for 

Example 2.14. 

The end of Chapter Two 
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Chapter Three 

Fluid Flow Concepts 

 

3.1 Definitions and Concepts 

Fluid kinematics is a branch of “Fluid mechanics” which deals with the study of 

velocity and acceleration of the particles of fluids in motion and their distribution 

in space without considering any force or energy involved. The motion of fluid can 

be described fully by an expression describing the location of a fluid particle in 

space at different times thus enabling determination of the magnitude and direction 

of velocity and acceleration in the flow field at any instant of time. 

 

Velocity ( ⃗ ): It is the time rate of change of displacement of fluid particles. It is a 

vector quantity, and the Cartesian vector form of a velocity field which varies in 

space:  

 

 ⃗   ⃗          

 ⃗            

  
  

  
  

  
  

  
  

  
  

  
  

 

Acceleration (  ): It is the time rate of change of velocity vector. 

To write Newton’s second law for an infinitesimal fluid system, we need to 

calculate the acceleration vector field    of the flow. Thus we compute the total 

time derivative of the velocity vector: 

x 

y 

z 

u, ax 

v, ay 
 

w, az 

Fluid particle (3.1) 
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  ⃗⃗ 

  
 

 

  
 ⃗         

  

  

  

  
 

  

  

  

  
 

  

  

  

  
   

Thus,    
  ⃗⃗ 

  
  

  

  
  

  

  
  

  

  
 

    
  ⃗⃗ 

  
  

  

  
  

  

  
  

  

  
  

    
  ⃗ 

  
  

  

  
  

  

  
  

  

  
  

    
  ⃗⃗ 

  
  

  

  
  

  

  
  

  

  
  

 

Therefore,                 

Streamlines (S.L.): 

A streamline is a curve that is everywhere tangent to the instantaneous local 

velocity vector. 

It is an imaginary line or curve drawn in the fluid flow such that the tangent drawn 

at any point of it indicates the direction of velocity ( ⃗ ) at that point. Since the 

velocity vector has a zero component normal to streamline, there can be no flow 

across a streamline at any point, see Figure (3.1). Streamlines indicate the direction 

of motion in various sections of fluid flow. 

 

 

 

 

 

 

 

 

(3.2) 

Figure 3.1: For two-dimensional flow in the xy-plane, arc length 𝑑�⃗�  = (dx, dy) along a streamline is 

everywhere tangent to the local instantaneous velocity vector �⃗�  = (u, v). 
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3.2 Types and Classification of Flow 

Internal and External Flow: 

Internal Flow is bounded by a wall (surface) 

around all the circumference of flow. Examples 

are pipe or duct flows, flows between turbine or 

compressor or pump blades see Figure (3.2). 

 

External Flow is bounded by a wall (surface) 

from one side and free at other sides. Examples 

are flow over a flat plate, over airfoil, over a car, 

over airplane fuselage, see Fig. (3.3). 

 

3.3 Steady and Unsteady Flow 

Steady Flow none of the flow and fluid variables such as, velocity, acceleration, 

density....., vary with time. 

Unsteady Flow in this kind of flow any one of the flow variables changes with 

time. 

Steady Flow: 
           

  
   

Unsteady Flow: 
           

  
   

The terms steady and uniform are used frequently in engineering, and thus it is 

important to have a clear understanding of their meanings. The term steady implies 

no change at a point with time. The opposite of steady is unsteady. The term 

uniform implies no change with location over a specified region. The terms 

unsteady and transient are often used interchangeably, but these terms are not 

synonyms. In fluid mechanics, unsteady is the most general term that applies to 

any flow that is not steady, but transient is typically used for developing flows. 

Figure 3.2: Internal flow (tube flow). 

Figure 3.3: External flow (plate flow). 
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3.4  Uniform and Non-uniform Flow 

Uniform Flow velocity vector ( ⃗ ) remains the same at all sections of the flow. 

Non-uniform Flow velocity vector ( ⃗ ) changes from section to sections of the 

flow. 

Uniform flow: 
  ⃗⃗ 

  
   

Non-uniform flow: 
  ⃗⃗ 

  
  , where s is the space. 

3.5  One-, Two-, and Three-Dimensional Flows 

A flow field is best characterized by the velocity distribution, and thus a flow is 

said to be one-, two-, or three-dimensional if the flow velocity varies in one, two, 

or three primary dimensions, respectively. A typical fluid flow involves a three-

dimensional geometry, and the velocity may vary in all three dimensions, 

rendering the flow three-dimensional [V= (x, y, z) in rectangular or V= (r,  , z) in 

cylindrical coordinates]. However, the variation of velocity in certain directions 

can be small relative to the variation in other directions and can be ignored with 

negligible error. In such cases, the flow can be modeled conveniently as being one- 

or two-dimensional, which is easier to analyze. 

 

3.6  Viscous (Real) and Non-Viscous (Ideal) Flow 

Viscous (Real) Flow effects of viscosity exist and cause reduction of velocity 

inside the boundary layer (B.L.) 

Non-Viscous (Inviscid, Ideal) effects of viscosity are absent outside the (B.L.), 

see Figure (3.4). 

 

 

 

 

Viscous (Real) 

Non-Viscous (Ideal) 

Figure 3.4: Schematic of boundary layer flow over a flat plate. 
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3.7 Compressible and Incompressible Flow 

A flow is classified as being compressible or incompressible, depending on the 

level of variation of density during flow. Incompressibility is an approximation, 

and a flow is said to be incompressible if the density remains nearly constant 

throughout. Therefore, the volume of every portion of fluid remains unchanged 

over the course of its motion when the flow (or the fluid) is incompressible. 

Incompressible Flow the flow in which the density (ρ) is assumed constant (ρ = 

constant). Examples are flow of liquids and gases with low velocities (M ≤ 0.3). 

Compressible Flow the flow in which the density (ρ) is not constant, but varies 

with pressure and temperature. Examples are gas flow and special types of liquid 

flow (such as water hammer phenomena). 

The densities of liquids are essentially constant, and thus the flow of liquids is 

typically incompressible. Therefore, liquids are usually referred to as 

incompressible substances. A pressure of 210 atm, for example, causes the density 

of liquid water at 1 atm to change by just 1%. Gases, on the other hand, are highly 

compressible. A pressure change of just 0.01 atm, for example, causes a change of 

1% in the density of atmospheric air.  

When analyzing rockets, spacecraft, and other systems that involve high-speed gas 

flows, the flow speed is often expressed in terms of the dimensionless Mach 

number defined as, 

    
             

              
 

 

 
                                                                    (3.3) 

where c is the speed of sound whose value is 346 m/s in air at room temperature at 

sea level. A flow is called sonic when Ma = 1, subsonic when Ma < 1, supersonic 

when Ma > 1, and hypersonic when Ma >> 1. 
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3.8  Rate of flow or discharge 

Rate of flow (or discharge) is defined as the quantity of a liquid flowing per second 

through a section of pipe or a channel. It is generally denoted by (Q). Let us 

consider a liquid flowing through a pipe. 

Discharge, Q = Area × Average velocity = A × V 

Where, A is the area of cross-section of the pipe, and V is the average velocity of 

the liquid. 

If area is in m
2
 and velocity is in m/s, then the discharge, m

3
/s. 

Volume Flow Rate (Q) is the volume rate of fluid passing a section in a certain 

fluid flow. 

Mass Flow Rate (ṁ) is the mass rate of fluid passing a section in a certain fluid 

flow. 

Mass Flow Rate, ṁ = density × Area × Average velocity = ρ × A × V = ρ × Q 

Example 3.1: 

The diameters of a pipe at the sections ①-① and ②-② are 200 mm and 300 mm 

respectively as illustrated in Figure 3.5. If the velocity of water flowing through the 

pipe at section ①-① is 4 m/s, find: (i) Discharge through the pipe. (ii) Velocity of 

water at section ②-②. 

Solution: 

Diameter of the pipe at section ①-①. 

 

 

 

 

 

 

 

Figure 3.5: Schematic of fluid flow 

through the pipe. 
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3.9  System and control volume 

A system is defined as a quantity of matter or a region in 

space chosen for study. The mass or region outside the 

system is called the surroundings. The real or imaginary 

surface that separates the system from its surroundings 

is called the boundary (see Figure 3.6). The boundary of 

a system can be fixed or movable. 

 

All the laws of mechanics are written for a system, which is defined as an arbitrary 

quantity of mass of fixed identity. Everything external to this system is denoted by 

the term surroundings, and the system is separated from its surroundings by its 

boundaries. The laws of mechanics then state what happens when there is an 

interaction between the system and its surroundings.  

The system is a fixed quantity of mass, denoted by m. Thus the mass of the system 

is conserved and does not change. This is a law of mechanics and has a very simple 

mathematical form, called conservation of mass: 

                     or        
  

  
   

Control volume (C.V.) is a fixed region in the space bounded by the control 

surface (C.S.). The control volume (C.V.) can exchange both mass and energy with 

the surrounding. 

A fluid dynamic system can be analyzed using a control volume, which is an 

imaginary surface enclosing a volume of interest. The control volume can be fixed 

or moving, and it can be rigid or deformable. Thus, we will have to write the most 

general case of the laws of mechanics to deal with control volumes. 

System approach is usually used in solid mechanics, where the body is clearly 

identified and can be followed during its motion. In fluid mechanics, a "System" of 

Figure 3.6: Schematic of System, 

surroundings, and boundary. 
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fluid cannot be easily followed during its motion, since its boundaries are not clear. 

Instead, a “Control Volume" approach is used, where a fixed volume specified in 

the fluid is considered and the changes in this C.V. due to flow of fluid system 

through it is studied. 

 

 

 

 

 

 

 

 

 

 

 

3.10 Conservation of Mass Principle 

The conservation of mass principle for a control volume can be expressed as: The 

net mass transfer to or from a control volume during a time interval ∆t is equal to 

the net change (increase or decrease) in the total mass within the control volume 

during ∆t. That is, 

 

 

 

Or,                      (kg)                                                                      (3.4) 

It can also be expressed in rate form as, 

 ̇    ̇                 (kg/s)                                                                      (3.5)                            

Figure 3.7: The integral of [𝑏𝜌�⃗�  �⃗� 𝑑𝐴] over the control 

surface gives the net amount of the property B flowing 

out of the control volume (into the control volume if it 

is negative) per unit time. 
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where  ̇   and  ̇    are the total rates of mass flow into and out of the control 

volume, and           is the rate of change of mass within the control volume 

boundaries. Equations 3.4 and 3.5 are often referred to as the mass balance and are 

applicable to any control volume undergoing any kind of process. 

Consider a control volume of arbitrary shape, as shown in Figure 3.8. The mass of 

a differential volume dV within the control volume is dm= ρdV. The total mass 

within the control volume at any instant in time t is determined by integration to be 

Total mass within the C.V.: 

     ∫     
  

        (3.6) 

Then the time rate of change of the 

amount of mass within the control 

volume can be expressed as 

Rate of change of mass within the C.V.: 

    

  
  

 

  
∫     
  

        (3.7) 

 

Using the definition of mass flow 

rate as, 

 

  
∫     
  

 ∑  ̇   ∑  ̇         or     
    

  
 ∑  ̇   ∑  ̇               (3.8) 

 

There is considerable flexibility in the selection of a control volume when solving 

a problem. Several control volume choices may be correct, but some are more 

convenient to work with. A control volume should not introduce any unnecessary 

complications. The proper choice of a control volume can make the solution of a 

seemingly complicated problem rather easy. A simple rule in selecting a control 

volume is to make the control surface normal to flow at all locations where it 

crosses fluid flow, whenever possible. 

Figure 3.8: The differential control volume dV and 

the differential control surface dA used in the 

derivation of the conservation of mass relation. 
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3.11 Mass Balance for Steady-Flow Processes 

During a steady-flow process, the total amount of mass contained within a control 

volume does not change with time (mC.V.= constant). Then the conservation of 

mass principle requires that the total amount of mass entering a control volume 

equal the total amount of mass leaving it. For a garden hose nozzle in steady 

operation, for example, the amount of water entering the nozzle per unit time is 

equal to the amount of water leaving it per unit time. When dealing with steady-

flow processes, we are not interested in the amount of mass that flows in or out of 

a device over time; instead, we are interested in the amount of mass flowing per 

unit time, that is, the mass flow rate  ̇. The conservation of mass principle for a 

general steady-flow system with multiple inlets and outlets can be expressed in rate 

form as (Figure 3.9) 

Steady flow:  ∑  ̇   ∑  ̇        (kg/s)                                                             (3.9) 

It states that the total rate of mass entering a control volume is equal to the total 

rate of mass leaving it. 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 3.9: Conservation of mass principle for a two-inlet–

one-outlet steady-flow system. 
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Many engineering devices such as nozzles, diffusers, turbines, compressors, and 

pumps involve a single stream (only one inlet and one outlet). For these cases, we 

denote the inlet state by the subscript 1 and the outlet state by the subscript 2, and 

drop the summation signs. Then Eq. 3.9 reduces, for single-stream steady-flow 

systems, to 

Steady flow (single stream):     ̇   ̇       ⇒                             (3.10) 

Special Case: Incompressible Flow 

The conservation of mass relations can be simplified even further when the fluid is 

incompressible, which is usually the case for liquids. Canceling the density from 

both sides of the general steady-flow relation gives 

Steady, incompressible flow:   ∑  ̇   ∑  ̇        (m
3
/s)                                (3.11) 

For single-stream steady-flow systems it becomes 

Steady, incompressible flow (single stream):  ̇   ̇   ⇒                 (3.12) 

It should always be kept in mind that there is no such thing as a “conservation of 

volume” principle. Therefore, the volume flow rates into and out of a steady-flow 

device may be different. The volume flow rate at the outlet of an air compressor is 

much less than that at the inlet even though the mass flow rate of air through the 

compressor is constant (Figure 3.10). This is due to the higher density of air at the 

compressor exit. For steady flow of liquids, however, the volume flow rates, as 

well as the mass flow rates, remain constant since liquids are essentially 

incompressible (constant-density) substances. Water flow through the nozzle of a 

garden hose is an example of the latter case. 

 

 

 

 

 

Figure 3.10: During a steady-flow process, volume flow rates 

are not necessarily conserved although mass flow rates are. 
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Example 3.2: A garden hose attached with a nozzle is used to fill a 10-gal bucket. 

The inner diameter of the hose is 2 cm, and it reduces to 0.8 cm at the nozzle exit. 

If it takes 50 s to fill the bucket with water, determine (a) the volume and mass 

flow rates of water through the hose, and (b) the average velocity of water at the 

nozzle exit. 

     

 

 

 

 

 

 

 

 

 

                

       

 

 

 

 

Example 3.3: A 4-ft-high, 3-ft-diameter cylindrical water tank whose top is open 

to the atmosphere is initially filled with water. Now the discharge plug near the 

bottom of the tank is pulled out, and a water jet whose diameter is 0.5-in streams 

out (see Figure below). The average velocity of the jet is given by  √    , where 

h is the height of water in the tank measured from the center of the hole (a 
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variable) and g is the gravitational acceleration. Determine how long it will take 

for the water level in the tank to drop to 2 ft from the bottom. 

Solution: 
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3.12 The Bernoulli equation 

The Bernoulli equation is an approximate relation between pressure, velocity, and 

elevation, and is valid in regions of steady, incompressible flow where net 

frictional forces are negligible (Figure 3.11). Despite its simplicity, it has proven 

to be a very powerful tool in fluid mechanics. In this section, we derive the 

Bernoulli equation by applying the conservation of linear momentum principle, 

and we demonstrate both its usefulness and its limitations. 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11: The Bernoulli equation is an approximate equation that is valid 

only in inviscid regions of flow where net viscous forces are negligibly small 

compared to inertial, gravitational, or pressure forces. Such regions occur 

outside of boundary layers and wakes. 

Figure 3.12: The forces acting on a fluid particle along a streamline. 
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Consider the motion of a fluid particle in a flow field in steady flow described in 

detail. Applying Newton’s second law (which is referred to as the conservation of 

linear momentum relation in fluid mechanics) in the s-direction on a particle 

moving along a streamline gives,  

∑                                                                                                 (3.13) 

In regions of flow where net frictional forces are negligible, the significant forces 

acting in the s-direction are the pressure (acting on both sides) and the component 

of the weight of the particle in the s-direction (Figure 3.12). Therefore, Equation 

3.13 becomes 

                     
  

  
                                            (3.14) 

Where the acceleration of the particle in the s-direction is [    
  

  
], θ is the 

angle between the normal of the streamline and the vertical z-axis at that point, m 

= ρV = ρdAds is the mass, W = mg = ρgdAds is the weight of the fluid particle, and 

sinθ = dz/ds. Substituting, 

              
  

  
        

  

  
                                                  (3.15) 

Canceling dA from each term and simplifying, 

                                                                                        (3.16) 

Noting that vdv = 0.5 d(v
2
) and dividing each term by ρ gives 

  

 
 

 

 
                                                                                     (3.17) 

Integrating    

Steady flow: ∫
  

 
 

  

 
                                             (3.18) 

since the last two terms are exact differentials. In the case of incompressible flow, 

the first term also becomes an exact differential, and its integration gives 

Steady, incompressible flow: 
 

 
 

  

 
                                        (3.19) 
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This is the famous Bernoulli equation, which is commonly used in fluid 

mechanics for steady, incompressible flow along a streamline in inviscid regions of 

flow. The value of the constant can be evaluated at any point on the streamline 

where the pressure, density, velocity, and elevation are known. The Bernoulli 

equation can also be written between any two points on the same streamline as 

Steady, incompressible flow:  
  

 
 

  
 

 
       

  

 
 

  
 

 
                      (3.20) 

The Bernoulli equation is obtained from the conservation of momentum for a fluid 

particle moving along a streamline. It can also be obtained from the first law of 

thermodynamics applied to a steady-flow system. 

The Bernoulli Equation According to Static, Dynamic, and Stagnation 

Pressures 

The Bernoulli equation states that the sum of the flow, kinetic, and potential 

energies of a fluid particle along a streamline is constant. Therefore, the kinetic and 

potential energies of the fluid can be converted to flow energy (and vice versa) 

during flow, causing the pressure to change. This phenomenon can be made more 

visible by multiplying the Bernoulli equation by the density ρ, 

   
  

 
                   (along a streamline)                                      (3.21) 

Each term in this equation has pressure units, and thus each term represents some 

kind of pressure: 

 P is the static pressure (it does not incorporate any dynamic effects); it 

represents the actual thermodynamic pressure of the fluid. This is the same 

as the pressure used in thermodynamics and property tables. 

 ρV
2
/2 is the dynamic pressure; it represents the pressure rise when the fluid 

in motion is brought to a stop isentropically. 



Fluid Flow Concepts                                                                          Chapter: Three 

18 

 

 ρgz is the hydrostatic pressure, which is not pressure in a real sense since its 

value depends on the reference level selected; it accounts for the elevation 

effects, i.e., of fluid weight on pressure. 

The sum of the static, dynamic, and hydrostatic pressures is called the total 

pressure. Therefore, the Bernoulli equation states that the total pressure along a 

streamline is constant. 

The sum of the static and dynamic pressures is called the stagnation pressure, and 

it is expressed as 

        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

               
  

 
                 (kPa)                                                      (3.22) 

Figure 3.13: The static, dynamic, and stagnation pressures. 
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The stagnation pressure represents the pressure at a point where the fluid is brought 

to a complete stop isentropically. The static, dynamic, and stagnation pressures are 

shown in Figure 3.13. When static and stagnation pressures are measured at a 

specified location, the fluid velocity at that location can be calculated from 

  √
                 

 
                 (m/s)                                                      (3.23) 

 

Example 3.4: 

Water is flowing from a hose attached to a water main at 400 kPa gage (Figure 

3.14). A child places his thumb to cover most of the hose outlet, causing a thin jet 

of high-speed water to emerge. If the hose is held upward, what is the maximum 

height that the jet could achieve? 

Solution: 

The water height will be maximum under the stated 

assumptions. The velocity inside the hose is relatively low 

(V1= 0) and we take the hose outlet as the reference level (z1= 

0). At the top of the water trajectory V2= 0, and atmospheric 

pressure pertains. Then the Bernoulli equation simplifies to       

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14 
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Example 3.5: 

A large tank open to the atmosphere is filled with water to a height of 5 m from the 

outlet tap (Figure 3.15). A tap near the bottom of the tank is now opened, and 

water flows out from the smooth and rounded outlet. Determine the water velocity 

at the outlet. 

Solution: 

We take point ① to be at the free surface of water so 

that P1 = Patm (open to the atmosphere), V1 = 0 (the 

tank is large relative to the outlet), and z1 = 5 m and z2 

= 0 (we take the reference level at the center of the 

outlet). Also, P2 = Patm (water discharges into the 

atmosphere). Then the Bernoulli equation simplifies to 

 

    

 

 

 

       

Example 3.6: 

During a trip to the beach (Patm = 1 atm = 101.3 kPa), a car runs out of gasoline, 

and it becomes necessary to siphon gas out of the car of a Good Samaritan (Figure 

3.16). The siphon is a small-diameter hose, and to start the siphon it is necessary to 

insert one siphon end in the full gas tank, fill the hose with gasoline via suction, 

and then place the other end in a gas can below the level of the gas tank. The 

difference in pressure between point 1 (at the free surface of the gasoline in the 

Figure 3.15 
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tank) and point 2 (at the outlet of the tube) causes the liquid to flow from the 

higher to the lower elevation. Point 2 is located 0.75 m below point 1 in this case, 

and point 3 is located 2 m above point 1. The siphon diameter is 5 mm, and 

frictional losses in the siphon are to be disregarded. Determine (a) the minimum 

time to withdraw 4 L of gasoline from the tank to the can and (b) the pressure at 

point 3. The density of gasoline is 750 kg/m
3
. 

Solution: 

(a) We take point 1 to be at the free surface of 

gasoline in the tank so that P1 = Patm (open 

to the atmosphere), V1 = 0 (the tank is large 

relative to the tube diameter), and z2 = 0 

(point 2 is taken as the reference level). 

Also, P2 = Patm (gasoline           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16 
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Example 3.7: 

A piezometer and a Pitot tube are tapped into a horizontal water pipe, as shown in 

Figure 3.17, to measure static and stagnation (static + dynamic) pressures. For the 

indicated water column heights, determine the velocity at the c enter of the pipe. 

Solution: 

We take points ① and ② along the centerline 

of the pipe, with point ① directly under the 

piezometer and point ② at the tip of the Pitot 

tube. This is a steady flow with straight and 

parallel streamlines, and the gage pressures at 

points ① and ② can be expressed as    

       

 

 

Noting that point ② is a stagnation point and thus V2 = 0 and z1 = z2, the 

application of the Bernoulli equation between points ① and ② gives     

     

 

 

Substituting the P1 and P2 expressions gives 

     

 

 

Solving for V1 and substituting, 

       

 

 

Figure 3.17: Schematic for Example 
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3.13 Mechanical energy and efficiency 

The mechanical energy can be defined as the form of energy that can be converted 

to mechanical work completely and directly by an ideal mechanical device such as 

an ideal turbine. Kinetic and potential energies are the familiar forms of 

mechanical energy. Thermal energy is not mechanical energy, however, since it 

cannot be converted to work directly and completely (the second law of 

thermodynamics). 

A pump transfers mechanical energy to a fluid by raising its pressure, and a 

turbine extracts mechanical energy from a fluid by dropping its pressure. 

Therefore, the pressure of a flowing fluid is also associated with its mechanical 

energy. 

The steady-flow energy equation on a unit-mass basis can be written conveniently 

as a mechanical energy balance as, 

 

                                                                                                                 (3.24) 

Noting that Wshaft, net in= Wshaft, in - Wshaft, out = Wpump - Wturbine, the mechanical energy 

balance can be written more explicitly as, 

                                                                                                                  (3.25) 

 

where Wpump is the mechanical work input (due to the presence of a pump, fan, 

compressor, etc.) and Wturbine is the mechanical work output. When the flow is 

incompressible, either absolute or gage pressure can be used for P since Patm/ρ 

would appear on both sides and would cancel out. emech, loss is the total mechanical 

power loss, which consists of pump and turbine losses as well as the frictional 

losses in the piping network. Multiplying above Equation by the mass flow rate ṁ 

gives: 
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By convention, irreversible pump and turbine losses are treated separately from 

irreversible losses due to other components of the piping system. Thus the energy 

equation can be expressed in its most common form in terms of heads as, 

 

                                                                                                                      (3.26) 

 

 

 

 

 

 

 

 

 

1 and 2 due to all components of the piping system other than the pump or turbine. 

 

 

Example 3.8: 

The pump of a water distribution system is powered by a 15-kW electric motor 

whose efficiency is 90 percent (see Figure 3.18). The water flow rate through the 

pump is 50 L/s. The diameters of the inlet and outlet pipes are the same, and the 

elevation difference across the pump is negligible. If the pressures at the inlet and 

outlet of the pump are measured to be 100 kPa and 300 kPa (absolute), 

respectively, determine (a) the mechanical efficiency of the pump and (b) the 

temperature rise of water as it flows through the pump due to the mechanical 

inefficiency. 

Solution: 
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1. The flow is steady and incompressible.  

2. The pump is driven by an external motor so that the 

heat generated by the motor is dissipated to the 

atmosphere.  

3. The elevation difference between the inlet and 

outlet of the pump is negligible, z1 ≈ z2.  

4. The inlet and outlet diameters are the same and 

thus the inlet and outlet velocities and kinetic energy 

correction factors are equal, V1 = V2.  

 

(a) The mass flow rate of water through the pump is 

 

 

The motor draws 15 kW of power and is 90 percent efficient. Thus the mechanical 

(shaft) power it delivers to the pump is 

 

 

To determine the mechanical efficiency of the pump, we need to know the increase 

in the mechanical energy of the fluid as it flows through the pump, which is 

 

 

Where α is the kinetic energy correction factor. 

Simplifying it for this case and substituting the given values, 

 

 

Then the mechanical efficiency of the pump becomes 

 

 

 

Figure 3.18  
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(b) Of the 13.5-kW mechanical power supplied by the pump, only 10 kW is 

imparted to the fluid as mechanical energy. The remaining 3.5 kW is converted to 

thermal energy due to frictional effects, and this “lost” mechanical energy 

manifests itself as a heating effect in the fluid, 

 
 
 
 

The temperature rise of water due to this mechanical inefficiency is determined 

from the thermal energy balance,  

 

Example 3.9: 

In a hydroelectric power plant, 100 m
3
/s of water flows from an elevation of 120 m 

to a turbine, where electric power is generated (Figure 3.19). The total irreversible 

head loss in the piping system from point 1 to point 2 (excluding the turbine unit) 

is determined to be 35 m. If the overall efficiency of the turbine–generator is 80 

percent, estimate the electric power output. 

Solution: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Solution 
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Therefore, a perfect turbine–generator would generate 83,400 kW of electricity 

from this resource. The electric power generated by the actual unit is 

 

 

 

 

 

 

 

 

 

 

 

 

Example 3.10: 

Water is pumped from a lower reservoir to a higher reservoir by a pump that 

provides 20 kW of useful mechanical power to the water (Figure 3.20). The free 

surface of the upper reservoir is 45 m higher than the surface of the lower 

reservoir. If the flow rate of water is measured to be 0.03 m
3
/s, determine the 

irreversible head loss of the system and the lost mechanical power during this 

process. 

Solution: 

The mass flow rate of water through the 

system is 

 

 

 

Figure 3.19  

Figure 3.20  



Fluid Flow Concepts                                                                          Chapter: Three 

28 

 

We choose points 1 and 2 at the free surfaces of the lower and upper reservoirs, 

respectively, and take the surface of the lower reservoir as the reference level (z1 = 

0). Both points are open to the atmosphere (P1 = P2 = Patm) and the velocities at 

both locations are negligible (V1 = V2 = 0). Then the energy equation for steady 

incompressible flow for a control volume between 1 and 2 reduces to 
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Consider a container of height h filled with water, as shown in Figure 3.21, with 

the reference level selected at the bottom surface. The gage pressure and the 

potential energy per unit mass are, respectively, PA= 0 and peA= gh at point A at 

the free surface, and PB= ρgh and peB= 0 at point B at the bottom of the container. 

An ideal hydraulic turbine would produce the same work per unit mass wturbine = gh 

whether it receives water (or any other fluid with constant density) from the top or 

from the bottom of the container. Note that we are also assuming ideal flow (no 

irreversible losses) through the pipe leading from the tank to the turbine. 

Therefore, the total mechanical energy of water at the bottom is equivalent to that 

at the top.      

 

 

 

 

 

 

 

 

 

 

 

The transfer of mechanical energy is usually accomplished by a rotating shaft, and 

thus mechanical work is often referred to as shaft work. A pump or a fan receives 

shaft work (usually from an electric motor) and transfers it to the fluid as 

mechanical energy (less frictional losses). A turbine, on the other hand, converts 

the mechanical energy of a fluid to shaft work. In the absence of any 

irreversibilities such as friction, mechanical energy can be converted entirely from 

Figure 3.21: The mechanical energy of water at the bottom of a container is equal to the 

mechanical energy at any depth including the free surface of the container. 



Fluid Flow Concepts                                                                          Chapter: Three 

30 

 

one mechanical form to another, and the mechanical efficiency of a device or 

process can be defined as, 

                                                                                                                      (3.27) 

  

A conversion efficiency of less than 100 percent indicates that conversion is less 

than perfect and some losses have occurred during conversion. A mechanical 

efficiency of 97 percent indicates that 3 percent of the mechanical energy input is 

converted to thermal energy as a result of frictional heating, and this will manifest 

itself as a slight rise in the temperature of the fluid. 

The degree of perfection of the conversion process between the mechanical work 

supplied or extracted and the mechanical energy of the fluid is expressed by the 

pump efficiency and turbine efficiency, defined as    

     

                                                                                                                      (3.28) 

where ∆Emech,fluid= Emech,out - Emech, in is the rate of increase in the mechanical energy 

of the fluid, which is equivalent to the useful pumping power Wpump, u supplied to 

the fluid, and 

                                                                                                                          (3.29) 

     

where ∆Emech, fluid = Emech, in - Emech, out is the rate of decrease in the mechanical 

energy of the fluid, which is equivalent to the mechanical power extracted from the 

fluid by the turbine W turbine, e, and we use the absolute value sign to avoid 

negative values for efficiencies. A pump or turbine efficiency of 100 percent 

indicates perfect conversion between the shaft work and the mechanical energy of 

the fluid, and this value can be approached (but never attained) as the frictional 

effects are minimized. 
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Example 3.11:  The water in a large lake is to be used to generate electricity by the 

installation of a hydraulic turbine–generator at a location where the depth of the 

water is 50 m (Figure 3.22). Water is to be supplied at a rate of 5000 kg/s. If the 

electric power generated is measured to be 1862 kW and the generator efficiency is 

95 percent, determine (a) the overall efficiency of the turbine– generator, (b) the 

mechanical efficiency of the turbine, and (c) the shaft power supplied by the 

turbine to the generator. 

Solution: 

 (a) We take the bottom of the lake as the 

reference level for convenience. Then 

kinetic and potential energies of water are 

zero, and the change in its mechanical 

energy per unit mass becomes     

 

 

 

 

 

 

 

(b) Knowing the overall and generator efficiencies, the mechanical efficiency of 

the turbine is determined from  

     

 

(c) The shaft power output is determined from the definition of mechanical 

efficiency, 

       

Figure 3.22: Schematic for Example 3.11. 
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3.14 The linear momentum equation 

Newton’s second law for a system of mass m subjected to a net force    is 

expressed as 

      

 

Where   ⃗⃗  is the linear momentum of the system. Noting that both the density and 

velocity may change from point to point within the system, Newton’s second law 

can be expressed more generally as 

     

 

where         is the mass of a differential volume element   , and is its 

momentum. Therefore, Newton’s second law can be stated as the sum of all 

external forces acting on a system is equal to the time rate of change of linear 

momentum of the system. This statement is valid for a coordinate system that is at 

rest or moves with a constant velocity, called an inertial coordinate system or 

inertial reference frame. Accelerating systems such as aircraft during takeoff are 

best analyzed using non-inertial (or accelerating) coordinate systems fixed to the 

aircraft. Note that the above equation is a vector relation, and thus the quantities    

and  ⃗  have direction as well as magnitude. 

The general form of the linear momentum equation that applies to fixed, moving, 

or deforming control volumes is obtained to be 
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In General: 

     

 

 

Note that the momentum equation is a vector equation, and thus each term should 

be treated as a vector. Also, the components of this equation can be resolved along 

orthogonal coordinates (such as x, y, and z in the Cartesian coordinate system) for 

convenience. 

The above equation is exact for fixed control volumes, it is not always convenient 

when solving practical engineering problems because of the integrals. Instead, as 

we did for conservation of mass, we would like to rewrite the above equation in 

terms of average velocities and mass flow rates through inlets and outlets. In other 

words, our desire is to rewrite the equation in algebraic rather than integral form. 

In many practical applications, fluid crosses the boundaries of the control volume 

at one or more inlets and one or more outlets, and carries with it some momentum 

into or out of the control volume. For simplicity, we always draw our control 

surface such that it slices normal to the inflow or outflow velocity at each such 

inlet or outlet (Figure 3.23). The mass flow rate ṁ into or out of the control volume 

across an inlet or outlet at which ρ is nearly constant is 

 

 

 

 

 

 

 

 

Figure 3.23: In a typical engineering problem, the 

control volume may contain many inlets and outlets; at 

each inlet or outlet we define the mass flow rate ṁ and 

the average velocity Vavg. 
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Mass flow rate across an inlet or outlet: 

 

 

 

Then we could write the rate of inflow or outflow of momentum through the inlet 

or outlet in simple algebraic form, Momentum flow rate across a uniform inlet or 

outlet: 

 

The uniform flow approximation is reasonable at some inlets and outlets, e.g., the 

well-rounded entrance to a pipe, the flow at the entrance to a wind tunnel test 

section, and a slice through a water jet moving at nearly uniform speed through air 

(Figure 3-24). 

    

 

 

 

 

 

 

 

 

3.15 Momentum-Flux Correction Factor, β 

Unfortunately, the velocity across most inlets and outlets of practical engineering 

interest is not uniform. Nevertheless, it turns out that we can still convert the 

control surface integral of Equation, 

Figure 3.24: Examples of inlets or outlets in which the uniform flow approximation is reasonable: 

(a) the well-rounded entrance to a pipe, (b) the entrance to a wind tunnel test section, and (c) a slice 

through a free water jet in air. 
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 into algebraic form, but a dimensionless correction factor β, called the 

momentum-flux correction factor, is required, as first shown by the French 

scientist Joseph Boussinesq (1842–1929). The algebraic form of the above 

equation for a fixed control volume is then written as,    

       

 

 

where a unique value of momentum-flux correction factor is applied to each inlet 

and outlet in the control surface. Note that β = 1 for the case of uniform flow over 

an inlet or outlet, as in Figure 3-17.  

Momentum-flux correction factor:     

 

It turns out that for any velocity profile you can imagine, β is always greater than 

or equal to unity.  

Example 3.12: 

Consider laminar flow through a very long straight section of round pipe. The 

velocity profile through a cross-sectional area of the pipe is parabolic (Figure 

3.25), with the axial velocity component given by   

 

 

where R is the radius of the inner wall of the pipe and Vavg is the average velocity. 

Calculate the momentum-flux correction factor through a cross section of the pipe 

for the case in which the pipe flow represents an outlet of the control volume, as 

sketched in Figure 3.25. 
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Solution: 

We substitute the given velocity profile for V 

in the above equation and integrate, noting 

that dAc= 2πrdr, 

 

 

 

 

 

 

Defining a new integration variable y = 1 - r 
2
/R

2 
and thus dy = -2r dr/R

2
 (also, y = 

1 at r = 0, and y= 0 at r= R) and performing the integration, the momentum-flux 

correction factor for fully developed laminar flow becomes 

 

Laminar flow:  

 

 

Notice: For turbulent flow β may have an insignificant effect at inlets and outlets, 

but for laminar flow β may be important and should not be neglected. It is wise to 

include β in all momentum control volume problems. 

 

 

 

 

 

Figure 3.25: Velocity profile over a cross section of a pipe in which 

the flow is fully-developed and laminar. 
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3.16 Steady Flow 

If the flow is also steady, the time derivative term in Equation: 

 

 

vanishes and we are left with, 

Steady linear momentum equation:  

 

where we dropped the subscript “avg” from average velocity. Above Equation 

states that the net force acting on the control volume during steady flow is equal to 

the difference between the rates of outgoing and incoming momentum flows. This 

statement is illustrated in Figure 3.26. It can also be expressed for any direction, 

since above equation is a vector equation. 

 

 

 

 

 

 

 

 

      

 

 

 

Steady Flow with One Inlet and One Outlet: Many practical problems involve just 

one inlet and one outlet (Figure 3.20). The mass flow rate for such single-stream 

systems remains constant, and above equation reduces to, 

One inlet and one outlet: 

Figure 3.26: Velocity profile over a cross section of a pipe in which 

the flow is fully-developed and laminar. 
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Example 3.13:  

A reducing elbow is used to deflect water flow at a rate of 14 kg/s in a horizontal 

pipe upward 30° while accelerating it as shown in Figure 3.27. The elbow 

discharges water into the atmosphere. The cross-sectional area of the elbow is 113 

cm
2
 at the inlet and 7 cm

2
 at the outlet. The elevation difference between the 

centers of the outlet and the inlet is 30 cm. The weight of the elbow and the water 

in it is considered to be negligible. Determine (a) the gage pressure at the center of 

the inlet of the elbow and (b) the anchoring force needed to hold the elbow in 

place. Take the momentum-flux correction factor to be β= 1.03. 

Solution:  

(a) We take the elbow as the control 

volume and designate the inlet by ① and 

the outlet by ②. We also take the x- and 

z-coordinates as shown.  

 

The continuity equation for this one-inlet, one-outlet, steady-flow system is ṁ1 = 

ṁ2 = ṁ = 14 kg/s. Noting that ṁ= ρAV, the inlet and outlet velocities of water are 

       

 

 

 

 

 

 

 

 

       

 

Figure 3.27: Schematic for Example 3.13. 
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(b) The momentum equation for steady one-dimensional flow is 

     

 

 

We let the x- and z-components of the anchoring force of the elbow be FRx and FRz, 

and assume them to be in the positive direction. We also use gage pressure since 

the atmospheric pressure acts on the entire control surface. Then the momentum 

equations along the x- and z-axes become     

     

 

 

 

Solving for FRx and FRz, and substituting the given values, 

 

 

 

 

 

 

 

 

Example 3.14:  

A reversing elbow such that the fluid makes a 180° U-turn before it is discharged, 

as shown in Figure 3.28. The elevation difference between the centers of the inlet 

and the exit sections is still 0.3 m. Determine the anchoring force needed to hold 

the elbow in place. Take the momentum-flux correction factor to be β = 1.03. 

 

 

 

 

 

 

Figure 3.28: Schematic for Example 3.14. 

V2= 20 m/s 

V1= 1.204 m/s 

P1, gage= 202200 Pa 

A1= 0.0113 m2 
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Solution: 

The vertical component of the anchoring force at the connection of the elbow to 

the pipe is zero in this case (FRz= 0) since there is no other force or momentum flux 

in the vertical direction. 

      

 

 

 

 

 

Noting that the outlet velocity is negative since it is in the negative x-direction. 

Therefore, the horizontal force on the flange is 2591 N acting in the negative x-

direction (the elbow is trying to separate from the pipe). 

Example 3.15:  

Water is accelerated by a nozzle to an average speed of 20 m/s, and strikes a 

stationary vertical plate at a rate of 10 kg/s with a normal velocity of 20 m/s 

(Figure 3.29). After the strike, the water stream splatters off in all directions in the 

plane of the plate. Determine the force needed to prevent the plate from moving 

horizontally due to the water stream. Take the momentum-flux correction factor to 

be β= 1. 

Solution: 

The momentum equation for steady one-

dimensional flow is given as,      

 

 

 

 

 

Figure 3.29: Schematic for Example 3.15. 
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Writing it for this problem along the x-direction (without forgetting the negative 

sign for forces and velocities in the negative x-direction) and noting that V1, x = V1 

and V2, x = 0 gives, 

                                       Substituting the given values, 

 

 

    

Example 3.16:  

A wind generator with a 30-ft-diameter blade span has a cut-in wind speed 

(minimum speed for power generation) of 7 mph, at which velocity the turbine 

generates 0.4 kW of electric power (Figure 3.29). Determine (a) the efficiency of 

the wind turbine–generator unit and (b) the horizontal force exerted by the wind on 

the supporting mast of the wind turbine. What is the effect of doubling the wind 

velocity to 14 mph on power generation and the force exerted? Assume the 

efficiency remains the same, and take the density of air to be 0.076 lbm/ft
3
. Take 

the momentum-flux correction factor to be β= 1. 

Solution: 

The power potential of the wind is 

proportional to its kinetic energy, which 

is V
2
/2 per unit mass, and thus the 

maximum power is ṁV
2
/2 for a given 

mass flow rate: 

         

 

 

 

 

Figure 3.29: Schematic for Example 16. 
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Therefore, the available power to the wind turbine is 1.225 kW at the wind velocity 

of 7 mph. Then the turbine–generator efficiency becomes 

      

 

 

Noting that the mass flow rate remains constant, the exit velocity is determined to 

be 

         

        

 

The momentum equation for steady one-dimensional flow is given as          

        

 

Substituting the known values gives 

 

 

 

Then the force exerted by the wind on the mast becomes Fmast = - FR = 31.5 lbf.  

The end of Chapter Three 
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Chapter Four 

Dimensional Analysis and Modeling 

 

 

 
4.1. Dimensions and Units 

A dimension is a measure of a physical quantity (without numerical values), while 

a unit is a way to assign a number to that dimension. For example, length is a 

dimension that is measured in units such as microns (μ m), feet (ft), centimeters 

(cm), meters (m), kilometers (km), etc. (Figure 4.1). There are seven primary 

dimensions (also called fundamental or basic dimensions) mass, length, time, 

temperature, electric current, amount of light, and amount of matter.  

 

 

 

 

 

 

 

Note: All non-primary dimensions can be formed by some combination of the 

seven primary dimensions. 

For example, force has the same dimensions as mass times acceleration (by 

Newton’s second law). Thus, in terms of primary dimensions, 

 

Dimensions of force:                                                                                   (4.1) 

 

Figure 4.1: A dimension is a measure of a physical quantity without numerical values, while a unit is a 

way to assign a number to the dimension. For example, length is a dimension, but centimeter is a unit. 
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where the brackets indicate “the dimensions of” and the abbreviations are taken 

from Table 4.1. You should be aware that some authors prefer force instead of 

mass as a primary dimension-we do not follow that practice. 

Table 4.1: Primary dimensions and their associated primary SI and English units 

 

 

 

 

 

 

 

 

4.2. Dimensional analysis and similarity 

In most experiments, to save time and money, tests are performed on a 

geometrically scaled model, rather than on the full-scale prototype. In such cases, 

care must be taken to properly scale the results. We introduce here a powerful 

technique called dimensional analysis. While typically taught in fluid mechanics, 

dimensional analysis is useful in all disciplines, especially when it is necessary to 

design and conduct experiments. You are encouraged to use this powerful tool in 

other subjects as well, not just in fluid mechanics. 

Dimensional analysis is a means of simplifying a physical problem by appealing 

to dimensional homogeneity to reduce the number of relevant variables.  

It is particularly useful for:  

1. Presenting and interpreting experimental data;  

2. Attacking problems not amenable to a direct theoretical solution;  

3. Checking equations;  

4. Establishing the relative importance of particular physical phenomena;  

5. Physical modelling. 
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Example:  

The drag force F per unit length on a long smooth cylinder is a function of air 

speed U, density ρ, diameter D and viscosity μ. However, instead of having to 

draw hundreds of graphs portraying its variation with all combinations of these 

parameters, dimensional analysis tells us that the problem can be reduced to a 

single dimensionless relationship  

CD= f (Re)  

where CD is the drag coefficient and Re is the Reynolds number.  

In this instance dimensional analysis has reduced the number of relevant variables 

from 5 to 2 and the experimental data to a single graph of CD against Re. 

 

Dimensions of derived quantities 

Dimensions of common derived mechanical quantities are given in the following 

table. 
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Dimensional Homogeneity 

The Principle of Dimensional Homogeneity: 

All additive terms in a physical equation must have the same dimensions. 

 

 

 

Dimensional homogeneity is a useful tool for checking formulae. For this reason it 

is useful when analyzing a physical problem to retain algebraic symbols for as 

long as possible, only substituting numbers right at the end. 
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4.3. The method of repeating variables and the Buckingham Pi Theorem 

Experienced practitioners can do dimensional analysis by inspection. However, the 

formal tool which they are unconsciously using is Buckingham’s Pi Theorem. This 

method can be applied as a step-by-step procedure or “recipe” for obtaining non-

dimensional parameters. There are six steps, listed briefly in Table 4.2. These steps 

are explained in further detail as we work through a number of example problems 

as well. 

Step ①: List the parameters (relevant variables) in the problem and count their 

total number (n). 

Step ②: List the primary (independent) dimensions of each of the (m) parameters. 

Step ③: Set the reduction (m) as the number of primary dimensions. Calculate 

(k), the expected number of Π’s (the number of non-dimensional parameters),  

k = n – m, then the two Pi groups are formed by power products of these three plus 

one additional variables, either υ1 or υ5: 

                                                            and 

Here we have arbitrarily chosen υ1 and υ5, the added variables, to have unit 

exponents. Equating exponents of the various dimensions is guaranteed by the 

theorem to give unique values of a, b, and c for each Pi. And they are independent 

because only Π1 contains υ1 and only Π2 contains υ5. 
 

Step ④: Choose m repeating parameters. 

Step ⑤: Construct the k Π’s, and manipulate as necessary. 

Step ⑥: Write the final functional relationship and check your algebra. 
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Example:  
Consider flow of an incompressible fluid of velocity V, density ρ and viscosity μ 

through a long, horizontal pipe of circular cross-section of diameter D and surface 

roughness ks. Obtain an expression in non-dimensional form for the pressure 

gradient (dp/dx). Show how this relates to the familiar expression for frictional 

head loss.  

Solution: 
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Example:  

The tip deflection δ of a cantilever beam is a function of tip load W, beam length l, 

second moment of area I and Young’s modulus E. Perform a dimensional analysis 

of this problem. 

Solution: 

         

 

 

 

 

 

 

 

 

 

Note: Although three primary dimensions (M, L, T) may appear when the 

variables are listed, they do not do so independently. This example illustrates a 

case where M and T always appear in the combination (MT
–2

), hence giving only 

one independent dimension. 
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4.4. Non-dimensional groups in fluid mechanics  

Dynamic similarity requires that the ratio of all forces be the same. The ratio of different forces 

produces many of the key non-dimensional parameters in fluid mechanics. 
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Example:  

The capillary rise h of a liquid in a tube varies with tube diameter d, gravity g, fluid 

density ρ, surface tension Ƴ, and the contact angle θ. (a) Find a dimensionless 

statement of this relation. (b) If h = 3 cm in a given experiment, what will h be in a 

similar case if the diameter and surface tension are half as much, the density is 

twice as much, and the contact angle is the same? 

Solution:      
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Example: 

A liquid of density ρ and viscosity μ flows by gravity through a hole of diameter d 

in the bottom of a tank of diameter D (as shown in Figure 4.4). At the start of the 

experiment, the liquid surface is at height h above the bottom of the tank, as 

sketched. The liquid exits the tank as a jet with average velocity V straight down as 

also sketched. Using dimensional analysis, generate a dimensionless relationship 

for V as a function of the other parameters in the problem. Identify any established 

non-dimensional parameters that appear in your result. (Hint: There are three 

length scales in this problem. For consistency, choose h as your length scale.) 

  

 

 

 

 

 

 

Solution: 

The step-by-step method of repeating variables is employed to obtain the non-

dimensional parameters (the Πs). 

Step 1: There are seven parameters in this problem; n = 7, 

List of relevant parameters: V = f (d, D, ρ, μ, h, g),        n = 7 

Step 2: The primary dimensions of each parameter are listed, 

 

 

 

Step 3: As a first guess, m is set equal to 3, the number of primary dimensions 

represented in the problem (m, L, t).      Reduction: m = 3 

If this value of (m) is correct, the expected number of Πs is 

Figure 4.4 



 Dimensional Analysis and Modeling                                               Chapter: Four 

15 

 

Number of expected Πs: k = n − m = 7 − 3 = 4 

Step 4: We need to choose three repeating parameters since m = 3. We pick length 

scale h, fluid density ρ, and gravitational constant g.  

Repeating parameters: h, ρ, and g 

Step 5: The Πs are generated. Note that in this case we do the algebra in our heads 

since these relationships are very simple. The dependent Π is 

Π1 = a Froude number: 

This Π is a type of Froude number. Similarly, the two length-scale Πs are 

obtained easily, 

Π2:                      and Π3:  

 

Finally, the Π formed with viscosity is generated, 

 

 

 

 

 

 

        

 

 

 

 

 

We recognize this Π as the inverse of a kind of Reynolds number. We also split 

the h terms to separate them into a length-scale and (when combined with g) a 

velocity scale. The final form is 

Modified Π4 = a Reynolds number:    

Step 6: We write the final functional relationship as 

Relationship between Πs: 



 Dimensional Analysis and Modeling                                               Chapter: Four 

16 

 

4.5. Physical Modeling 

If a dimensional analysis indicates that a problem is described by a functional 

relationship between non-dimensional parameters Π1, Π2, Π3, ... then full similarity 

requires that these parameters be the same at both full (“prototype”) scale and 

(“model”) scale. i.e.,  

 

 

Geometric Similarity: 

 A model and prototype are geometrically similar if and only if all body 

dimensions in all three coordinates have the same linear-scale ratio. 

 All angles are preserved in geometric similarity. All flow directions are 

preserved. The orientations of model and prototype with respect to the 

surroundings must be identical. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Geometric similarity in model testing: (a) prototype; (b) one-tenth-scale model. 

(a) prototype (b) one-tenth-scale model. 
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Kinematic Similarity: 

Kinematic similarity requires that the model and prototype have the same length-

scale ratio and the same time-scale ratio. The result is that the velocity-scale ratio 

will be the same for both: 

 The motions of two systems are kinematically similar if homologous 

particles lie at homologous points at homologous times. 

Length-scale equivalence simply implies geometric similarity, but time-scale 

equivalence may require additional dynamic considerations such as equivalence of 

the Reynolds and Mach numbers. 

     

 

 

 

 

 

 

 

 

 

 

Dynamic Similarity: 

Dynamic similarity exists when the model and the prototype have the same length-

scale ratio, time-scale ratio, and force-scale (or mass-scale) ratio. Again 

geometric similarity is a first requirement; without it, proceed no further. Then 

dynamic similarity exists, simultaneous with kinematic similarity, if the model and 

prototype force and pressure coefficients are identical. This is ensured if: 

Figure 4.3: Frictionless low-speed flows are kinematically similar: Flows with no free surface are 

kinematically similar with independent length- and time-scale ratios. 
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1. For compressible flow, the model and prototype Reynolds number and Mach 

number and specific-heat ratio are correspondingly equal. 

2. For incompressible flow 

a. With no free surface: model and prototype Reynolds numbers are equal. 

b. With a free surface: model and prototype Reynolds number, Froude number, and 

(if necessary) Weber number and cavitation number are correspondingly equal. 

 

Example: 

A prototype gate valve which will control the flow in a pipe system conveying 

paraffin is to be studied in a model. List the significant variables on which the 

pressure drop across the valve would depend. Perform dimensional analysis to 

obtain the relevant non-dimensional groups.   

A 1/5 scale model is built to determine the pressure drop across the valve with 

water as the working fluid.  

(a) For a particular opening, when the velocity of paraffin in the prototype is 3 m/s 

what should be the velocity of water in the model for dynamic similarity?  

(b) What is the ratio of the quantities of flow in prototype and model?  

(c) Find the pressure drop in the prototype if it is 60 kPa in the model.  

(The density and viscosity of paraffin are 800 kg/m
3
 and 0.002 kg/m.s, 

respectively. Take the kinematic viscosity of water as 1×10
–6

 m
2
/s). 

Solution: 

The pressure drop ΔP is expected to depend upon the gate opening h, the overall 

depth d, the velocity V, density ρ and viscosity μ. 

List the relevant variables:  ΔP, h, d, V, ρ, μ 
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Number of variables: n = 6  

Number of independent dimensions: m = 3 (M, L and T)  

Number of non-dimensional groups: n – m = 3 

Choose m (= 3) scaling variables:  geometric (d); kinematic/time-dependent (V); 

dynamic/mass-dependent (ρ).  

Form dimensionless groups by non-dimensionalising the remaining variables: Δp, 

h and μ.  
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Example: 

The designers need to predict how long it will take for the ethylene glycol to 

completely drain. Since it would be very expensive to run tests with a full-scale 

prototype using ethylene glycol, they decide to build a onequarter scale model for 

experimental testing, and they plan to use water as their test liquid. The model is 

geometrically similar to the prototype (Figure 4.5). (a) The temperature of the 

ethylene glycol in the prototype tank is 60°C, at which ν = 4.75 × 10
-6

 m
2
/s. At 

what temperature should the water in the model experiment be set in order to 

ensure complete similarity between model and prototype? (b) The experiment is 

run with water at the proper temperature as calculated in part (a). It takes 4.53 min 

to drain the model tank. Predict how long it will take to drain the ethylene glycol 

from the prototype tank. 

 Dimensionless relationship: 

 

 

Solution: 
Since the model and prototype are geometrically similar, (d/h)model = (d/h)prototype and (D/h)model = 

(D/h)prototype. Thus, we are left with only one Π to match to ensure similarity. Namely, the 

Reynolds number parameter must be matched between model and prototype. Since g remains the 

same in either case, and using “m” for model and “p” for prototype, 

 

 

Similarity:      

 

 
We recognize that ν = μ/ρ, and we know that hp/hm = 4. 

 

    

Similarity:    

 
For similarity we need to find the temperature of water where the kinematic viscosity is 5.94×
10

-7
 m

2
/s. By interpolation from the property tables, the designers should run the model tests at a 

water temperature of 45.8°C.  

 

Figure 4.5 
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(b) At dynamically similar conditions, 

 

At dynamically similar conditions: 

 

 

The end of Chapter Four ….. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 
Ramadi, 2021-2022 

University of Anbar 

College of Engineering 

Mechanical Engineering Dept. 

Fluid Mechanics-I 

(ME 2301) 

Handout Lectures for Year Two 

Chapter Five/ Laminar Flow in pipes 

Course Tutor  

Prof. Dr. Waleed M. Abed 



Laminar Flow in pipes                                                                         Chapter: Five 

2 

 

 

Chapter Five 

Laminar Flow in pipes 

 

 
5.1. Flow in pipes 

Fluid flow in circular and noncircular pipes is commonly encountered in practice. 

The hot and cold water that we use in our homes is pumped through pipes. Water 

in a city is distributed by extensive piping networks. Oil and natural gas are 

transported hundreds of miles by large pipelines. Blood is carried throughout our 

bodies by arteries and veins. The cooling water in an engine is transported by hoses 

to the pipes in the radiator where it is cooled as it flows. Thermal energy in a 

hydronic space heating system is transferred to the circulating water in the boiler, 

and then it is transported to the desired locations through pipes. 

Fluid flow is classified as external and internal, depending on whether the fluid is 

forced to flow over a surface or in a conduit. Internal and external flows exhibit 

very different characteristics. In this chapter we consider internal flow where the 

conduit is completely filled with the fluid, and flow is driven primarily by a 

pressure difference. This should not be confused with open-channel flow where the 

conduit is partially filled by the fluid and thus the flow is partially bounded by 

solid surfaces, as in an irrigation ditch, and flow is driven by gravity alone. 

 
5.2. Laminar and turbulent flows 

The flow regime in the first case is said to be laminar, characterized by smooth 

streamlines and highly ordered motion, and turbulent in the second case, where it 

is characterized by velocity fluctuations and highly disordered motion. The 

transition from laminar to turbulent flow does not occur suddenly; rather, it occurs 



Laminar Flow in pipes                                                                         Chapter: Five 

3 

 

over some region in which the flow fluctuates between laminar and turbulent flows 

before it becomes fully turbulent. Most flows encountered in practice are turbulent. 

Laminar flow is encountered when highly viscous fluids such as oils flow in small 

pipes or narrow passages as shown in Figure 5.1. 

We can verify the existence of these laminar, transitional, and turbulent flow 

regimes by injecting some dye streaks into the flow in a glass pipe, as the British 

engineer Osborne Reynolds (1842–1912) did over a century ago. We observe that 

the dye streak forms a straight and smooth line at low velocities when the flow is 

laminar (we may see some blurring because of molecular diffusion), has bursts of 

fluctuations in the transitional regime, and zigzags rapidly and randomly when 

the flow becomes fully turbulent. These zigzags and the dispersion of the dye are 

indicative of the fluctuations in the main flow and the rapid mixing of fluid 

particles from adjacent layers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1.a: Spinning Reynolds’ sketches 

of pipe-flow transition: (a) low-speed, 

laminar flow; (b) high-speed, turbulent flow; 

(c) spark photograph of condition (b). 

(a) 

(b) 

(c) 

Figure 5.1.b: The behavior of colored fluid injected into the flow in laminar and turbulent 

flows in a pipe. 
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5.3. Reynolds Number 

After exhaustive experiments in the 1880s, Osborne Reynolds discovered that the 

flow regime depends mainly on the ratio of inertial forces to viscous forces in the 

fluid. This ratio is called the Reynolds number and is expressed for internal flow in 

a circular pipe as,      

      

 

where Vavg= average flow velocity (m/s), D= characteristic length of the geometry 

(diameter in this case, in m), and υ= μ/ρ= kinematic viscosity of the fluid (m
2
/s). 

Note that the Reynolds number is a dimensionless quantity. Also, kinematic 

viscosity has the unit m
2
/s, and can be viewed as viscous diffusivity or diffusivity 

for momentum. 

The Reynolds number at which the flow becomes turbulent is called the critical 

Reynolds number, Recr. The value of the critical Reynolds number is different for 

different geometries and flow conditions. For internal flow in a circular pipe, the 

generally accepted value of the critical Reynolds number is Recr= 2300. 

For flow through noncircular pipes, the Reynolds number is based on the hydraulic 

diameter Dh defined as (Figure 5.2), 

Hydraulic diameter: 

 

where Ac is the cross-sectional area of the pipe and p is its wetted perimeter. The 

hydraulic diameter is defined such that it reduces to ordinary diameter D for 

circular  pipes, 

Circular pipes:  

 

Square duct: 

 

Rectangular duct:  

Figure 5.2 
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Under most practical conditions, the flow in a circular pipe is laminar for Re ≤ 

2300, turbulent for Re ≥ 4000, and transitional in between. That is, 

 

 

 

 

5.4. Laminar flow in pipes 

We mentioned in Section 5.2. that flow in pipes is laminar for Re ≤ 2300, and that 

the flow is fully developed if the pipe is sufficiently long (relative to the entry 

length) so that the entrance effects are negligible. 

In fully developed laminar flow, each fluid particle moves at a constant axial 

velocity along a streamline and the velocity profile u(r) remains unchanged in the 

flow direction. There is no motion in the radial direction, and thus the velocity 

component in the direction normal to flow is everywhere zero. There is no 

acceleration since the flow is steady and fully developed. 

Now consider a ring-shaped differential volume 

element of radius r, thickness dr, and length dx 

oriented coaxially with the pipe, as shown in 

Figure 5.3. The volume element involves only 

pressure and viscous effects and thus the pressure 

and shear forces must balance each other. The 

pressure force acting on a submerged plane 

surface is the product of the pressure at the 

centroid of the surface and the surface area. A 

force balance on the volume element in the flow 

direction gives 

 
Figure 5.3: Free-body diagram of a ring-shaped differential fluid element of radius 

r, thickness dr, and length dx oriented coaxially with a horizontal pipe in fully 

developed laminar flow. 
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which indicates that in fully developed flow in 

a horizontal pipe, the viscous and pressure 

forces balance each other. Dividing by 2πdrdx 

and rearranging, 

 

 

Taking the limit as dr, dx  0 gives        

 

 

Substituting τ = - μ (du/dr) and taking μ = 

constant gives the desired equation, 

 

 

 

 

The quantity du/dr is negative in pipe flow, and the negative sign is included to 

obtain positive values for t. (Or, du/dr = - du/dy since y= R - r.) The left side of 

above Equation is a function of r, and the right side is a function of x. The equality 

must hold for any value of r and x, and an equality of the form f (r) = g(x) can be 

satisfied only if both f (r) and g(x) are equal to the same constant. Thus we 

conclude that dP/dx = constant. This can be verified by writing a force balance on 

a volume element of radius R and thickness dx (a slice of the pipe), which gives 
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Here τw is constant since the viscosity and the velocity profile are constants in the 

fully developed region. Therefore, dP/dx = constant. 

by rearranging and integrating it twice to give 

 

 

The velocity profile u(r) is obtained by applying the boundary conditions ∂u/∂r = 0 

at r = 0 (because of symmetry about the centerline) and u = 0 at r = R (the no-slip 

condition at the pipe surface). We get 

 

 

 

Therefore, the velocity profile in fully developed laminar flow in a pipe is 

parabolic with a maximum at the centerline and minimum (zero) at the pipe wall. 

Also, the axial velocity u is positive for any r, and thus the axial pressure gradient 

dP/dx must be negative (i.e., pressure must decrease in the flow direction because 

of viscous effects). 

 

 

 

Combining the last two equations, the velocity profile is rewritten as 

 

      

This is a convenient form for the velocity profile since Vavg can be determined 

easily from the flow rate information. The maximum velocity occurs at the 

centerline and is determined from the velocity profile equation (equation above) by 

substituting r = 0, 

      Therefore, the average velocity in fully developed laminar pipe flow 

is one half of the maximum velocity. 
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5.5. Pressure drop and head loss 

A quantity of interest in the analysis of pipe flow is the pressure drop (P since it is 

directly related to the power requirements of the fan or pump to maintain flow. We 

note that dP/dx = constant, and integrating from x= x1 where the pressure is P1 to 

x= x1 + L where the pressure is P2 gives 

     

 

Substituting above equation into the Vavg expression, the pressure drop can be 

expressed as, 

Laminar flow:      

 

In fluid flow, ∆P is used to designate pressure drop, and thus it is P1 & P2. A 

pressure drop due to viscous effects represents an irreversible pressure loss, and it 

is called pressure loss ∆PL to emphasize that it is a loss (just like the head loss hL, 

which is proportional to it). Therefore, the drop of pressure from P1 to P2 in this 

case is due entirely to viscous effects, and above equation represents the pressure 

loss ∆PL when a fluid of viscosity μ flows through a pipe of constant diameter D 

and length L at average velocity Vavg. 

In practice, it is found convenient to express the pressure loss for all types of fully 

developed internal flows (laminar or turbulent flows, circular or noncircular pipes, 

smooth or rough surfaces, horizontal or inclined pipes).  

 

Pressure loss:   

where ρV
2

 avg/2 is the dynamic pressure  

 

 f is the Darcy friction factor, 

 

It is also called the Darcy–Weisbach friction factor,  
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It should not be confused with the friction coefficient Cf [also called the Fanning 

friction factor] which is defined as Cf = 2τw/(ρV
2

avg) = f /4. 

Solving for f gives the friction factor for fully-developed laminar flow in a circular 

pipe, 

 

Circular pipe, laminar:     

 

 

This equation shows that in laminar flow, the friction factor is a function of the 

Reynolds number only and is independent of the roughness of the pipe surface. 

 

Head loss:     

 

Once the pressure loss (or head loss) is known, the required pumping power to 

overcome the pressure loss is determined from 

     

 

where V is the volume flow rate and ṁ is the mass flow rate. 

Example:  

Water properties (ρ= 62.42 lbm/ft
3
 and μ=1.038×10

-3
 lbm/ft .s) is flowing through 

a 0.12 in (= 0.010 ft) diameter 30 ft long horizontal pipe steadily at an average 

velocity of 3.0 ft/s (see Figure 5.4). Determine (a) the head loss, (b) the pressure 

drop, and (c) the pumping power requirement to overcome this pressure drop. 

Solution: 

      

 

 

 

(a) First we need to determine the flow regime. The Reynolds number is 

Figure 5.4: Schematic for above Example. 
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which is less than 2300. Therefore, the flow is laminar. Then the friction factor and 

the head loss become     

       

 

 

 

(b) Noting that the pipe is horizontal and its diameter is constant, the pressure drop 

in the pipe is due entirely to the frictional losses and is equivalent to the pressure 

loss, 

     

 

 

(c) The volume flow rate and the pumping power requirements are 

 

 

 

 

Example: 

An oil with ρ = 900 kg/m
3
 and υ = 0.0002 m

2
/s flows upward through an inclined 

pipe as shown in Figure below. The pressure and elevation are known at sections 1 

and 2, 10 m apart. Assuming steady laminar flow, (a) verify that the flow is up, (b) 

compute hf between 1 and 2, and compute (c) volume flow rate, (d) Velocity, and 

(e) Reynolds number. Is the flow really laminar? 
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Solution:      
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This is well below the transition value Re= 2300, and so we are fairly certain the 

flow is laminar. 


